
Chapter 3
Towards Integration of Modelling
in Secondary Mathematics Teaching

Morten Blomhøj

Abstract The inclusion of models and modelling in mathematics curricula has been
a major trend internationally in recent decades. This has taken place in interplay with
research on the teaching and learning of modelling and applications. However, it is
still a pending challenge for research how to support real integration of modelling
and applications into mathematics teaching. At the secondary school level in par-
ticular, the duality between the aim of developing students’ modelling competence
and that of supporting their learning of mathematics through modelling activities
is essential for understanding and furthering the integration. The interplay between
research and the development of teaching practices with regard to these two aims is
discussed. In particular, the potential and challenges of using theories on the learning
of mathematics to support the integration of modelling as a didactical approach will
be illustrated and discussed in relation to two examples of mathematical modelling
of dynamical phenomena at secondary level.

Keywords Secondary mathematics · Integration of modelling ·Modelling
competence · Conceptual learning ·Modelling dynamical phenomena

3.1 Introduction

Research on the teaching and learning of mathematical modelling has developed to
a level where it constitutes its own field of research within the mathematics educa-
tion community (see Niss et al. 2007, pp. 28–32). Through this research, a coherent
theory consisting of four main elements has been established: (1) A set of potential
and actually used justifications for including modelling and application at differ-
ent levels; (2) Conceptions of a mathematical model, a modelling process and of
modelling competence, and related well-argued for and empirically tested ways of
supporting the students’ development of modelling competency and their learning
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of mathematics through modelling activities; (3) Experiences and theoretical based
knowledge about opportunities and challenges in teaching, learning and assessing
of modelling competency; and (4) Theoretical based methodologies for developing
teaching practices through (in-service) education and collaboration between teachers
and researchers in developmental projects.

In his plenary address at ICME-12, Werner Blum surveyed the achievements in
the field from the perspective of what it tells us about quality in the teaching of
applications and modelling at secondary level. Based on empirical findings, Blum
identified ten important aspects in a teaching methodology integrating modelling
and applications (Blum 2015, pp. 83–86). However, he concluded with the following
remark:

I would like to emphasise that all these efforts will not be sufficient to assign applications and
modelling its proper place in curricula and classrooms and to ensure effective and sustainable
learning. The implementation of applications and modelling has to take place systemically,
with all system components collaborating closely: curricula, standards, instruction, assess-
ment and evaluation, and teacher education. (p. 87)

One important contribution from research to such a systemic approach is to
develop further the interplaywith teaching practices. This challenge, however, stands
differently with regard to the two ends of the dual aim for integrating applications
and modelling in secondary mathematics teaching; namely to support the students’
development of modelling competence or to enhance the students’ learning of math-
ematics by means of modelling and applications. Therefore, for analytical purposes,
in this chapter a distinction ismade between these two aims, although they are closely
connected in a duality.

With regard to the first aim, the research has developed in interplay with the
practices of teaching modelling in specific courses of lessons or as part of devel-
opmental projects. The research surveyed by Blum (2015) provides a strong basis
for a teaching practice aiming at developing the student’s modelling competence. In
Maaß (2006) the concept of modelling competence is unfolded with respect to the
modelling cycle and related reflections. In Blomhøj and Højgaard (2007) modelling
competency is discussed as a main justification for secondary mathematics in gen-
eral education. Working with the entire process of mathematical modelling—the full
modelling cycle—is here seen as the natural and necessary constituent of the devel-
opment of modelling competency in teaching (pp. 48–49). Research has pinpointed
theoretically and empirically learning difficulties related to the different phases in
the modelling process, see for example Borromeo Ferri (2006). Moreover, research
has developed different ways of conceptualising progress in the (individual) stu-
dents’ modelling competency. Blomhøj and Højgaard (2007) described progress in
modelling competency using the notions from the Danish KOM-project (Niss and
Højgaard 2011) and wrote about the development of modelling competency in three
dimensions, namely the degree of coverage with respect to the modelling cycle, the
technical level—mathematically and/or in modelling techniques, and the domain of
action—meaning the domain of extra-mathematical situations in which the mod-
elling competency can be put into action. Other researchers define different levels
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of modelling competency by means of the students’ understanding of, and reflection
on, their modelling work, see for examples vomHofe et al. (2005). Kaiser and Brand
(2015) analyse how the concept of mathematical modelling competencies has devel-
oped in research during the latest three decades.With regard to the aim of developing
students’ modelling competencies, it is still a challenge for research to establish a
basis for conceptualising students’ progress in and level of competency inmodelling.

However, in general, research on the teaching and learning of modelling provides
theory based designs for, and investigations of, many different ways of organizing
mathematical modelling activities in classrooms with the aim of developing the
students’ modelling competencies. A rich and extensive documentation thereof is
found in the International Community of Teachers of Mathematical Modelling and
Applications (ICTMA) biennial international conferences and in the related volumes
in the Springer book series International perspectives on the teaching and learning
of mathematical modelling, see http://www.ictma.net/.

The theories developed are to a high degree aligned with the development of
practices of teaching modelling with the aim of developing the students’ modelling
competencies. The basic concepts, notions and theories about models and modelling
are developed in close interplay with the development of teaching practices, and are
therefore, in principle, quite easily applied in designing and/or analysing mathemat-
ical modelling activities in classrooms.

With regard to the second main aim of teaching mathematical modelling at sec-
ondary level, namely to support the students’ learning of mathematics the situation
is different. The theoretical foundations for the potential of using modelling as a
didactical vehicle for supporting the students’ learning of mathematical concepts
and methods are to be found not only in research on the learning of applications and
modelling, but also in research on the learning of mathematics in general. In the field
of research on the teaching and learning of modelling there are three frameworks,
which have a particular focus on modelling as a means for supporting the students’
learning of mathematics. Two of them can be characterized as having an epistemo-
logical perspective on modelling, namely Realistic Mathematics Education (RME)
and The Anthropological Theory of Didactics (ATD). These are both comprehensive
frameworks covering mathematics teaching and learning in general. The third frame-
work is the Models and Modelling Perspective (MMP) and can be characterized as
having a contextual problem solving perspective on modelling (Kaiser and Sriraman
2006).

In RME and ATD, modelling is subordinated amongst more general theories on
the teaching and learning of mathematics. In RME the learning process is under-
stood as the learners’ dynamical reinvention of mathematical knowledge through the
process of mathematisation (Freudenthal 1983). The process starts with students’
mathematising their experienced reality in different contexts (horizontal mathema-
tisation). Thereby, the students develop a foundation for acquiring the theoretical
meaning of the concepts and methods used. This learning process is conceptualized
inRMEas verticalmathematisation. Throughmathematizingwith an increasing level
of abstraction the mathematical concepts gradually obtain their theoretical meaning.
The notion ‘from model of [some particular type of situation] to model for [under-

http://www.ictma.net/
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standing a mathematical concept]’ is essential in RME for understanding the chang-
ing role of models in the process of learning mathematical concepts (Gravemeijer
and Doorman 1999).

ATD offers a general and strong theory for understanding and designing mathe-
matics teaching. The basic assumption is that mathematical knowledge—and human
knowledge in general—is developed with the aim of contributing to the answering
of some specific type of questions, and that mathematics teaching therefore should
identify and use as its point of departure for teaching such generating questions for the
mathematical knowledge in the curricula. The didactical research under ATD there-
fore develops and investigates implementations of what is called Activity of Study
and Research organized around a question with strong generative power (Chevallard
2011). To the degree that the questions are referring to extra-mathematical situations
and contexts—and that is typically the case—theATD approach placesmathematical
modelling in the centre of the learning of mathematics emphasizing modelling as a
didactical means for learning mathematics rather than modelling competency as an
aim.

WithinMMP, the research often focuses on what it means to understand particular
important mathematical concepts and methods in different situations and contexts,
and on how to design modelling activities where the students can activate the pin-
pointed aspects of the concepts in their modelling activities (Doerr and Lesh 2011).
These didactical activities are called Modelling Eliciting Activities (MEA), and a set
of design principles for MEAs has been developed and tested in many projects (e.g.,
Lesh and Doerr 2003). Points of departure are taken in everyday real-life contexts,
in meaningful contexts established in the teaching, or in authentic applications in
other disciplines or professions. Emphasis is placed on the students’ construction
of meaningfulness in the modelling process and through related reflections in the
support of the students’ learning of mathematics. However, research within MMP is
also concerned with developing the students’ competencies in problem solving and
mathematical modelling. Both ATD andMMP take a systemic approach and include
the interplay between the activities in class, the teachers’ activities before, under and
after the teaching, the researchers’ activities and the interaction between the teachers
and the researchers.

As a common core, all three frameworks build on the assumption that the learning
potentials of modelling lie in the fact that the students’ learning of mathematical
concepts can be anchored and given cognitive roots through the students’ modelling
activities. The students’ conceptual understanding can be challenged and developed
further through working with modelling and applications in a variation of contexts.

Research has long since identified, investigated empirically, and explained theo-
retically learning difficulties principally related to the learning of mathematical con-
cepts. These theories are developed independent of the frameworks for modelling-
based teaching described above. However, as illustrated in the sections to follow,
these theories pinpoint learning difficulties, which can be brought into light and
helped overcome by means of modelling activities.

In traditional forms of mathematics teaching it is indeed possible to overlook or
to disregard the fact that many of the students do not learn the key mathematical
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concepts at secondary level. Many students complete their secondary education with
a rudimentary understanding of important concepts such as rational and real numbers,
variable, equation, function, rate of change, derivatives and integrals. The problems
become evident at tertiary level, where the students’ mathematical conceptions are
too fragile to form a basis for further education with mathematics.

From a systemic point of view, full integration of modelling and application in
secondary mathematics teaching requires that the drawbacks of traditional forms
of teaching when it comes to supporting the students’ learning of key mathematical
concepts are realized and that modelling is seen as a didactical means for overcoming
such learning difficulties. Therefore, it is crucial that teachers can build upon an
understanding of the theories pinpointing and explaining such learning difficulties.
This is, however, quite demanding, since the relevant theories are difficult for teachers
to relate to their practice. Accordingly, there is a challenge for research to find ways
to support the interplay between theories on the learning of mathematical concepts
and the development of teaching practice in modelling.

3.2 Learning Mathematics Through Modelling in Practice

Together with colleagues, and in collaboration with teachers during the years, I have
been involved in developing and researching mathematical modelling as a means for
supporting students’ learning of mathematics from lower secondary level (Grade 7)
to early university level. Typically, the projects or in-service courses have involved
the teachers’ planning, teaching, and evaluating modelling lessons or courses in
their own practice. In general, the aim of these activities has been to support the
integration ofmodelling inmathematics at lower secondary (Grades 7–9 in theDanish
comprehensive school) and at upper secondary level (Grades 10–12 in the Danish
gymnasium). In both systems modelling is included, but not really integrated, in the
curriculum.

These experiences show that it is much easier for teachers to work with the aim of
developing the students’ modelling competence than to deliberately plan for mod-
elling activities to support the students’ learning of particular mathematical concepts.
Typically, during courses, the teachers make use of the modelling cycle as a tool for
planning a modelling course and as a tool for analysing the students’ modelling
work. However, it is more difficult for teachers to see and pinpoint for the students,
the learning potentials in their modelling activities and to use such situations for
challenging and developing the students’ conceptual understanding. In particular,
the teachers often find it difficult to draw on the students’ different experiences and
results frommodelling activities in building a shared understanding in the class of the
concepts or methods involved. It is difficult for the teachers to connect the students’
modelling anchored understanding to themathematical knowledge in the curriculum.

In developmental projects and in-service courses aiming at helping teachers inte-
grate modelling as a means for supporting the students’ learning of mathematics, we
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have been facing the challenge of how to make better use of theories on the learning
of mathematical concepts (Blomhøj and Kjeldsen 2013b).

In particular, we have used theoretical ideas related to:

• the important role of representations for the learning of mathematical concepts
(Steinbring 1987, 2005);

• concept images (Vinner and Dreyfus 1989);
• the process-object duality in concept formation (Sfard 1991); and
• the previously mentioned RME notion of the development from a model of some
type of situation to a model for the understanding and learning of a mathematical
concept (Gravemeijer and Doorman 1999).

All these theories have proven helpful for analysing the students’ learning during their
modellingwork; for developing and improvingmodelling problems; and as a resource
for supporting and challenging the students during theirworkwithmodelling projects
in a first-year university course (Blomhøj and Kjeldsen 2010).

However, the theories are not easy to apply for teachers. Therefore, there is a need
for tools, which can help teachers to see modelling activities as a didactical means
for supporting the students’ learning of key mathematical concepts. An example is
the schema used in the following two examples for spanning the possible use of
different forms of representations of process and object aspects of key mathematical
concepts involved in a modelling process in a particular context.

The divide between process and object aspects is according to the model for
formation ofmathematical concepts developedbySfard (1991).Of course the schema
primarily makes sense in relation to concepts, which have clear process and object
aspects, but even in such cases—as indicated in the two examples below—it is not
a simple task to distinguish between representations of process and object aspects
of mathematical concepts—the same representation (the same signs) can often be
interpreted as referring to both process and object aspects of a concept.

For a given modelling activity, the schema can be filled out a priori in order to
uncover the potentials for supporting the students’ work with, and sense making
of, representations of the mathematical concepts involved. Also, the schema can
be used to structure and analyse evidence for the students’ work with the different
representations and their mutual connections in actual modelling activities.

In each cell it is possible to distinguish between the concrete model or modelling
situation on the one hand, and a generalised model on the other hand; that is to
emphasize the possible change of perspective from seeing the model at hand as a
model of a particular situation to seeing it as an emerging generalised model for
understanding the mathematical concept in focus (Gravemeijer and Doorman 1999).
So far the schema has been used in courses and developmental projects in relation
to: the function concept, linear functions, exponential functions, the derivative con-
cept, and the integral concept. In the following two examples the schema is used to
summarise the potentials for supporting the students’ conceptual learning in relation
to the modelling activities.
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3.3 Modelling Dynamical Phenomena

Twomodelling situations at Grade 8 and 9 are presented. They can be seen as possible
early elements in a longitudinal teaching and learning trajectory on the modelling
of dynamical phenomena by means of compartment modelling, difference (and later
differential) equations supported by the use of digital technology. The two examples
include key mathematical concepts such as variable, function, rate of change and
integrals. Of course, the concepts of rate of change and integrals are only present in
the modelling activities as contextualized intuitive ideas. However, experiences from
such modelling activities can provide the students with a foundation for learning cal-
culus, and to develop gradually competence for modelling of dynamical phenomena
during the upper secondary level. Blomhøj and Kjeldsen (2010) present and discuss
a modelling project, which can be seen as a possible continuation of this trajectory at
university level. This section illustrates how the previously discussed theories on the
learning of mathematical concepts can be used to pinpoint potentials in modelling
situations for supporting the students’ conceptual learning.

3.3.1 The Morning Shower

A morning shower is a rich context for modelling a simple dynamical phenomenon,
namely the use of water depending on the showering time. It can be used in lower sec-
ondary mathematics teaching from Grade 7 as a context for introducing linear func-
tions. The idea originates from a project called Mathematical Mornings (Blomhøj
and Skånstrøm 2006). In that project, the main idea was to challenge the students
to use mathematics to describe and analyse some phenomena from their everyday
morning life. The objectives were to: (1) motivate mathematical work, (2) establish
stable cognitive roots for the students’ conceptions of basic mathematical concepts,
and (3) to provide the students with experiences of mathematics as a means for
describing, analysing and understanding everyday life situations.

The task for the students was to produce an A3 poster of his or her mathematical
morning based on observations and data. The students were expected to make a
poster each of their own mathematical morning, but they were encouraged to help
each other. This idea has been usedmany times in later projects and in-service courses
and also by other educators. Inmanyof these courses and projects themorning shower
has proven to be a fruitful modelling task for supporting the students’ learning of
linear functions at lower secondary level. The students are (in our privileged culture)
indeedvery familiarwith the real situation and they canquite easily see the connection
between the duration of their shower and the amount of water used. From experience,
many students canmake the reasonable simplifying assumption that the flow ofwater
can be assumed constant after the shower has begun. Also, quite often students notice
themselves that there is some cold water in the pipeline, which has to run off before
they enter the warm shower. Many students—especially girls—also notice that the
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duration of their showers depend on howmuch time they have andwhether or not they
wash their hair. A typical boy’s remark is: “Coming after my sister I may not need to
wait for the cold water to run off, but my shower will be short since she always uses
almost all the warmwater.” In general, the students can easily activate their everyday
experiences in relation to the real situation. This is of course a wonderful opportunity
for the mathematics teacher to motivate the students’ modelling work: “So you need
a table, a graph or a formula, to give you the amount of water used for your shower
depending on its duration”. Based on such assumptions and reflections it makes sense
for the students to measure the water flow in their own shower and the time they wait
before entering the shower (or the amount of cold (not warm) water in the pipe, W0).
From a modelling perspective, it is a central point that meaningful measuring of the
specific magnitudes has a conceptual model of the real situation as its prerequisite.
In subsequent teaching the situation can be represented by a compartment diagram
stressing that it is the amount of used water, W (t), which we want to keep track of,
while increasing by means of the constant water flow, wf:

As illustrated in the photo in Fig. 3.1a it is not necessarily very easy in practice
to measure the water flow in the shower. Students may need to repeat the measure-
ment because they forget to measure the time needed to fill the bucket or because
not all of the water goes into the bucket the first time. However, it is doable for
most students, and with thoughtful planning of the course of lessons nearly all stu-
dents can be expected to produce relevant data and to calculate the water flow for
their own morning shower. From here they can produce tables, a graph and maybe
even an algebraic representation of the amount of used water as a function of the
duration of the shower. However, even if students can write an equation for a linear
function modelling their shower, it is not at all necessary that they perceive this as a
representation of a mathematical object.

Students can use a spreadsheet (Excel or GeoGebra) to produce a table by starting
with the amount of cold water and adding the calculated water flow per minute for
each consecutive minute and produce a graph by hand or by means of a spreadsheet.
In this way the students work with representations of the process aspect of a linear
function. Figure 3.1b shows a graph drawn usingGeoGebra to represent the situation
where a student has measured the water flow to be 6 L per minute and the amount
of cold water as 3 L. The points corresponding to time of showering and water used
(t, W ) are calculated in a spreadsheet in GeoGebra, plotted and connected to form
the stippled line in Fig. 3.1b. Based on concrete calculations of the amount of water
used for showers of different duration, that is: 5, 10, 15 min, the students can be
challenged individually to set up an equation using t (or x) as a variable for the time
in minutes and W for the water used in litres: W = 6 L/min · t + 3 L. Thereby, the
students can gain support for developing their concept images of a graph of a function
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Fig. 3.1 a Measuring the flow in the shower and b representing the model graphically

as consisting of exactly the coordinate points created by the function relationship and
therefore—in this case—fulfilling an equation defining the function.

The notion of students’ concept images as developed by Vinner and Dreyfus
(1989) pinpoints exactly the necessity for the students to work with all important
aspects of a mathematical concept. It is easy to find students in Grade 10 or later,
who cannot really make sense out of the fact that a given point belongs to the graph
of a function in a given context. According to Vinner and Dreyfus, the explanation
is simply that this relation is not part of their concept image of a function. In tra-
ditional mathematics teaching, it is possible to learn about functions and be able to
draw graphs of functions and solve standard tasks, without understanding important
connections between different representations of the function concept.

Individually, and in subsequent teaching for the whole class, the students can
be challenged to write the general equation for a straight line shown in GeoGebra,
y = ax + b, where the value for the parameters a and b can be changed by means
of sliders as shown in Fig. 3.1b. By developing and experimenting with such an
interactive sketch, the students can experience that the straight line through their
points has a unique representation by the parameters a and b. These can then be
given their natural interpretations as the slope of the line (and in the real situation
as the flow of water or the rate of change measured in litres/minute) and as the
intersection with the y-axis (the cold water, the initial value of the state variable in
litres).

Through such activities, the students can obtain support for taking the reification
step in their formation of their concept of a (linear) function (Sfard 1991). They
can experience a linear function as a representation of the process of calculating
the amount of used water for a variation of the time of showering and see how this
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Fig. 3.2 Representations of a linear function in the Morning Shower

function can be seen as a mathematical object with certain qualities and different
representations. As pinpointed by Sfard, this is a crucial step in the formation of
mathematical concepts in general. Students’ modelling work in situations that make
sense for them has the potential to support this essential step in the concept formation
process.

Through their modelling of the morning shower situation, students can construct
a stable cognitive root for the concept of function as a process connecting to vari-
ables as well as a mathematical object, which can be represented in different forms:
natural language, a diagram, a numerical table, an algebraic equation, an algorithmic
representation, and a graphical representation. Thereby, the epistemological trian-
gle (Steinbring 1987) for the concept of function can be spanned in different ways
all referring to the morning shower situation with which the students have concrete
experiences.

Moreover, through such activities the students may develop a model for under-
standing linear functions in general, that is, change the perspective from working
with a model of some real situation to see the model at hand as a means for under-
standing a mathematical concept (Gravemeijer and Doorman 1999). In this case, it is
even relevant to talk about the embodiment of the slope of a straight line and the rate
of change, since the students after havingmodelled their shower, now have the power
to change the slope of the line—within certain limitations of course—by turning the
flow of water up or down during their showers. Such experiences provide a strong
cognitive root for learning the concepts involved.

Figure 3.2 shows different forms of representations of a linear function that might
come into play in the Morning Shower modelling activity.
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Fig. 3.3 a A 100 m sprint and b speed graph in GeoGebra for a sprint in 14 s

3.3.2 The 100 m Sprint

The second example has its origin in a project where students in Grades 8–10 had the
physical experience of running a 100 m sprint (see Fig. 3.3a). All should have had
their individual time recorded. The aim of the activity is for each student to model
his or her personal sprint in terms of describing mathematically how the speed and
the distance changed during their sprint. The learning aim is to support the students’
understanding of speed as the rate of change of the distance and establish a cognitive
root for understanding the integral concept. The students’ activity can be framed by
the following connected tasks:

(1) Calculate your average speed in metres per second for your 100 m sprint. Make a
coordinate system in GeoGebra in which you can depict your speed in m/sec from the
time you started to the end time of your sprint.

(2) Start by imaging that you had run with the same speed from the start to the end. Draw
the speed graph for that situation. (Of course, you did not, since you stood still at the
start of the race otherwise, there would have been a false start.)

(3) How can you calculate the distance that you have run from this graph? (Of course, you
already know that it is 100 m.)

(4) Assume that you have run with constant acceleration starting from still. Draw the graph
for your speed from the start to your end time in this situation. With what speed would
you have crossed the finish line in that situation? Is that a realistic possibility?

(5) Use the spreadsheet in GeoGebra to fill in for each second during your sprint, your best
estimate for your speed at that exact moment of your sprint. Draw this speed graph in
the same coordinate system. Adjust your speed estimates so as you reach the 100 m in
the time from your real sprint.

From their experiences running the sprint and supported by their answers to the
tasks (1)–(4), Grade 8–10 students can make reasonable estimates for their speed
during their sprint in task (5). By making use of the dynamical interplay between the
spreadsheet, the graph window in GeoGebra, and the calculation of the area under
the speed graph, the students can adjust their estimated speed for each second during
their sprint, so it fits with the 100 m in exactly their time.
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The graph for a casewhere the 100m sprint is done in 14 s is shown as aGeoGebra
figure in Fig. 3.3b. The figure also includes the graph for the constant speed equal
to the average speed of 7.14 m/s as the horizontal line. The points A, B,…, O are
taken from the spreadsheet in GeoGebra and the area (the distance) is calculated
dynamically by means of the tool ‘Area of polygon’. If a point is changed, say point
E (4, 7.5) to (4, 6.5), the area will change from 100 to 99 m because 1 m/s for 1 s is
missing in order to reach the 100 m in 14 s.

These features in GeoGebra enable the students to estimate realistic speed graphs
for their sprint and to experience the direct relationship between the speed in each
second and the distance (the area) covered.

The situation can also be represented by means of a compartment model:

The compartment model of the 100 m sprint can be seen as a generalization of the
model for the shower, since in this case the rate of change is a non-constant function.
The speed function, v(t), cannot be given by a simple algebraic expression. However,
from the students’ experiences with the real situation it is conceptually clear for most
students that their 100 m sprint can be modelled by a speed function represented by a
graph. Hence, the modelling of the 100m sprint can contribute to the extension of the
students’ concept image of a function to include relationships, which is not defined
by an algebraic expression. In addition, this activity has the potential for developing
into a “model for” the students’ understanding of how the distance is determined by
the speed and how it can be calculated by means of summing up (integrating) the
speed.

The compartment approach to themodelling of dynamical phenomena can be con-
tinued in upper secondary level and at university level supporting the students’ mod-
elling competence as well as their mathematical understanding. The compartment
representation provides—at least for some students—a foundation for understanding
the fundamental theorem of calculus:

The net rate of change for a compartment is the sum of inflows minus the sum
of outflows. The level of a compartment at time t is the value at previous t0 plus the
integral of the net rate of change from t0 to t. Together with experiences from mod-
elling dynamical phenomena as in the two examples of the compartment formulation
constitutes an intuitive explanation of the fundamental theorem of calculus. Hereby,
it is also indicated how a longitudinal learning trajectory within the modelling of
dynamical phenomena by means of compartments and difference equation can help
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S(t) as area 
function for v(t) 

Fig. 3.4 Representations of the time-speed-distance relationships in The 100 m Sprint

overcome learning difficulties connected to key mathematical concepts (Blomhøj
and Kjeldsen 2010, 2013a).

The possible representations of the process and object aspects of the relationships
between time, speed and distance, which can come into play in thismodelling activity
are summed up in the schema in Fig. 3.4.

3.4 Conclusion

Mathematics education research has a lot to offer for helping the integration ofmathe-
maticalmodelling in secondarymathematics teaching. In general, the theory-practice
relation stands differently with respect to the educational aim of developing the stu-
dents’ modelling competencies and the aim of supporting the students’ learning of
mathematics throughmodelling activities respectively (Blomhøj andÄrlebäck2018).

With regard to the objective of developing the students’ modelling competencies
research is already quite well aligned with the development of practice. Projects
and courses in classrooms are already to some degree based on theoretical notions
and ideas developed in research. Of course, there are still challenges for research,
such as conceptualising—also for assessing—the students’ progress in modelling
competency.
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In order for modelling and applications to be fully integrated in secondary math-
ematics teaching, modelling should also be seen and understood as a didactical
means for supporting the students’ learning of mathematics. Here also, theories are
available in the form of the frameworks mentioned and in the form of theories on
difficulties related to the learning of mathematical concepts. These theories can serve
as a basis for the justification of modelling as an integrated element in secondary
mathematics teaching in curricula reforms. The theories also provide a basis for
designing teaching, where modelling is used as the didactical means for supporting
the students’ conceptual learning. However, in order to be helpful for teachers the
theories need to be concretized and re-contextualised in developmental projects or
in-service education. The schema of representations shown here is one example of
how research can develop tools, which can help researchers and teachers to connect
theories on the learning of mathematical concepts to concrete modelling activities.
Designing and investigating longitudinal learning trajectories for the students’ learn-
ing of important mathematics through modelling activities as illustrated above could
be another possible research approach for furthering integration of modelling in
secondary mathematics teaching.

Of course, even though research may provide a necessary basis for the integration
of modelling in curricula and in teaching practices at secondary level, it is not in
any way sufficient for ensuring the integration in practice. As pointed out by Blum
(2015), systemic approaches are needed in order to really support the integration
of modelling in the practice of secondary mathematics teaching. Here, a main chal-
lenge for research is to develop and test methodologies for collaboration between
researchers and teachers in various institutional contexts. Araújo (2019) develops and
discusses a framework for a dialectical relationship between pedagogical practice and
research in mathematical modelling, which may serve as a basis for developing such
methodologies.
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