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Abstract. In this work we develop an online deep-learning based app-
roach for classification on data streams. Our approach is able to learn in
an incremental way without storing and reusing the historical data (we
only store a recent history) while processing each new data sample only
once. To make up for the absence of the historical data, we train Gener-
ative Adversarial Networks (GANs), which, in recent years have shown
their excellent capacity to learn data distributions for image datasets.
We test our approach on MNIST and LSUN datasets and demonstrate
its ability to adapt to previously unseen data classes or new instances of
previously seen classes, while avoiding forgetting of previously learned
classes/instances of classes that do not appear anymore in the data
stream.
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1 Introduction

In recent years methods based on Deep Learning have become state of the art in
numerous applications, such as image and signal classification [7], object detec-
tion [10] and segmentation [4], natural language processing [2,11] and many
others. Despite its popularity and efficiency, most of the currently existing appli-
cations are based on offline learning where all the data are constantly available
during training. On the other hand, scenarios where data arrive continuously
in large quantities and have to be integrated into the learning models in real
time are starting to get more and more attention from the Machine Learning
community.

In this context, the main problem is that most of the Deep Learning meth-
ods are prone to forgetting the concepts that are no longer represented by the
dataset they are trained on. In literature this phenomena is known as catas-
trophic forgetting [8]. The current solution for this problem is to store the whole
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dataset to be able to reuse all the data samples at any moment. At the same
time, training Neural Networks is based on gradient backpropagation, which is
slow and often requires passing through the dataset many times.

The described problems impose hard constraints for applications which
require continuous learning to adapt to changing environments, and, especially,
for distributed applications on devices with limited storage and computational
resources, like smartphones or small private servers.

In this paper we introduce a method that uses Generative Adversarial Net-
works [3] to model the real data distribution and replace the necessity of storing
and reusing historical data when performing online classification learning on data
streams. We test our method on MNIST and LSUN datasets and show that it
allows to efficiently train classifiers on multi-class streams of data with possible
concept drifts [12] with no need of retraining the model on historical data.

The present proposal is based on our previous work [1] and improves upon
it in several ways: first, we extend our framework to handle data coming con-
tinuously and in random order, which corresponds to a much more realistic
situation; second, we test the framework on the much larger LSUN database 1

with more complex data; third, we quantify the loss (in classification accuracy)
when using our method compared to the offline situation. We also study forget-
ting/classification improvement behavior of our approach on classes that were
initially present or appear at some moment of the stream.

The rest of the paper is organized as follows: In Sect. 2 we present our method
for online classification of unordered streams without data storage, followed in
Sect. 3 by the experimental validation. Section 4 concludes the paper by a dis-
cussion of our work and suggests several directions for further development.

2 Proposed Method

The goal of this work is to develop a method allowing to train classifiers on
data streams with time changing environment described by the set of the data
classes currently present in the stream. The main issue with such a task is that
neural network based classifiers tend to forget already learned classes if the
corresponding data is removed from the training set, which is a realistic scenario
in evolving data streams.

Intuitively, there are two possible ways to handle the problem of forgetting in
Neural Networks. From one hand, one could try to control the way the backprop-
agation works when updating the classifier and to avoid strong modifications of
the weighs of the network that are important for correct classification of those
classes. From the other hand, forgetting is caused by the absence of correspond-
ing data. Storing and reusing the data itself helps in batch learning, but is hardly
feasible in the continuous massive data stream setup. Storing only partial infor-
mation from missing data or some representation of it should help. In this paper
we focus on second idea and propose to train generative models in order to
replace the necessity of storing and reusing of historical data.
1 http://lsun.cs.princeton.edu/2017/.
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2.1 Replacing Original Data by Generators

To avoid storing historical data we train generative models to learn the dis-
tribution of the original data and use them to produce synthetic data samples
to replace the original ones. To do so, we use Generative Adversarial Networks
that have recently shown excellent ability to learn data distributions on image
datasets and generate samples that are very similar to the original images. More
specifically, we use a Deep Convolutional version of GAN (DCGAN [9]) in which,
comparing to original GAN and its other convolutional modifications, all the
pooling layers are replaced by stride convolutions. At the same time, the pro-
posed architecture does not have any fully connected layers, uses Batch Nor-
malization [6] and ReLU activation function are replaced by LeakyReLU in the
discriminator network. All the described changes show better stability during
training and allow to learn higher resolution models.

2.2 Batch Classification on Generated Data

In our previous work [1] we introduced quantitative metrics to evaluate gener-
ative and representative capacities of generative models on a given dataset. We
demonstrated that, according to those metrics, DCGANs are able to represent
well the original data and to generalize over it, i.e. allow a classifier trained on
generated data to have good generalization abilities on unseen test data.

Fig. 1. Batch training accuracy on the original validation data for MNIST and LSUN
dataset when trained on real vs. generated data
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Fig. 2. Stream classification scheme (for LSUN dataset, on MNIST no feature extrac-
tion is performed), described in this work. Stream is represented as an infinite sequence
of data intervals. Each processing block is described in corresponding subsection of
Sect. 2.3. All the green boxes represent the processes, described in details in the paper.
(Color figure online)

In order to check if DCGAN-based generators can represent more complex
datasets, we train it on LSUN in batch mode, one generator per class. We then
train two classifiers: first one on the original data that was used to train the
generators, and second one on purely generated data produced by pretrained
DCGANs. We then test obtained classifiers on validation set consisting of pre-
viously unseen real images and compare the classification accuracies of both.
From Fig. 1 we observe that using generated data to train a classifier results in
a decrease in classification accuracy (MNIST: 99.14% → 97.16%; LSUN: 88.69%
→ 70.22%), especially for LSUN dataset. Nevertheless, we find this decrease an
acceptable trade-off to be able to pass to completely online classification training
scenario with no necessity to store historical data, especially taking into account
the data complexity of LSUN dataset.

2.3 Online Learning on Data Streams

Simulating Data Stream. In this work we consider the case where data arrive

continuously in stream. Let E =
∞⋃

k=1

Ek be an environment emitting data con-

tinuously in time, where Ek represents the subset of E corresponding to class i.
We will make an assumption that data is sampled with the examples of unique
type and format (e.g. RGB images of same size, sound recordings of given length,
etc.). We will consider that each class, when it appears in the stream, lasts for
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some period of time and emits at least b samples. We then can say that we receive
data from stream in the form of batches of size b, where each batch contains only
the elements of one class. Since the datasets we use are static and our goal is
to work with data streams, for our experiments we need to define the way data
will arrive during training.

We start by assuming that the stream is divided into time intervals. Every
interval contains at least two and at most M distinct data classes. Each time a
new interval is started we remove several classes from the previous interval and
add new classes from E, so that the new interval always contains at least one class
from the previous one (to simulate environment continuity) and never exceeds
M classes. Every class, when it appears in the stream, emits a random number
of batches. The durations of each interval and sub-interval, corresponding to a
given class, are taken randomly from corresponding predefined ranges.

Forming the Buffer. Let us also initialize a data buffer B of size N × b, that
will serve to collect data from batches in order to use it later to train a classifier.
We will fill in the buffer until the number of batches of one of the classes reaches
the buffers limit size. After that we complete buffer to have equal number of
images for each class by generating samples from all the pretrained generators
(Fig. 2, Forming the buffer), and send obtained data to train the classifier. We
then empty the buffer and start filling it again.

Network Training. When starting the online training on stream we consider
that we already have pretrained generative models for some of the classes from
the dataset, as well as the pretrained classifier for those data classes. Each time
a new class appears in the stream we initialize a new GAN for it. We train the
GANs with batches of corresponding classes directly when they appear in stream.
The classification network is trained each time the data buffer is complete and
its performance is evaluated on the test set at the end of each stream interval.
Figure 2 shows the full schematic representation of the proposed framework.

3 Experimental Results

3.1 Datasets and Data Preparation

To test the hypothesis proposed in this paper we perform our evaluations first
on the MNIST dataset, which is usually used as a baseline dataset in many
ML-based studies in image analysis, and then on the LSUN dataset to check its
performance on more complex data.

In every experimental setup, independently from the dataset, we train one
generator per data class.
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Fig. 3. Classification accuracy during online stream training for MNIST dataset

MNIST is a collection of gray-scale images of hand-written digits of 28 × 28
pixels each. The images include 10 data classes, each corresponding to a separate
number from 0 to 9. The training set includes 6000 images per class and the test
set 1000 images per class. No spatial transformation was applied on MNIST
for either classification or GAN training. The classification network we use on
MNIST consists of two convolutional with max pooling layers (with resp. 16 and
32 feature maps using 4 × 4 kernels), followed by three fully connected layers
(512 × 512, 512 × 128 and 128 × 10) with ReLU activation function except for
the output layer.

LSUN is a collection of RGB images of size at least 256 × 256 pixels each.
The dataset includes 10 classes of scenes (bedroom, bridge, church outdoor,
classroom, conference room, dining room, kitchen, living room, restaurant and
tower), with the smallest class containing around 126k images and the biggest
one over 3 millions of images. We extracted 5k images from each class to use
them as a validation set for classification, the rest of the images were used to
form the stream and train both generative models and classifier.

Every image is transformed to square shape by cutting its sides. DCGAN in
its original formulation does not work on big size images, but works perfectly
well on images of size 64 × 64 pixels and less. Also, since our goal was to
simulate a data stream with only unique samples, we needed to perform some
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data augmentation on the dataset. For these reasons, we rescaled LSUN images
to the size of 96 × 96 pixels and randomly cropped them to 64 × 64 pixels each
time they appear in stream.

Training state-of-the-art classifiers for large complex datasets usually requires
very deep network architectures and takes a lot of time and resources. Getting
a performance similar to the state-of-the-art batch learning scenario was not
the intention of this work, so, we used a few shortcuts that allowed us to speed
up training, to the expense of a slight decrease in classification accuracy. More
precisely, we rescaled the original images, as well as the generated 64× 64 pixels
images, to a 224 × 224 size, and, passed them through the convolutional lay-
ers of the ResNet-200 network ([5]), a convolutional network pretrained on the
ImageNet dataset. The latter was thus used as a feature extractor. Four fully-
connected layers with ReLU activations (except for the output layer) were added
on top of the feature extraction block to form the 10-class classification network
(2048 × 1024 → 1024 × 512 → 512 × 128 → 128 × 10).

3.2 Online Classification

We performed online classifier training on MNIST and LSUN datasets, which
were streamed in the way described in Sect. 2.3.

In our online-learning-on-stream scenario, we achieved a maximum accuracy
of 98.64% on MNIST (Fig. 3) and 77.59% for LSUN on 10 classes, which is
comparable to the results of our batch experiments where the classifiers are
trained on only generated data from pretrained DCGANs. Comparing the results
of online classification on stream with batch classification allow us to quantify
the loss of performance, to the best of our knowledge there exist very few works
on online classification on evolving streams of complex data, and no established
baseline for evaluation.

The online training on a stream is quite unstable for the LSUN dataset and
classification accuracy varies a lot from one interval to the other as can be seen
from the accuracy standard deviation that is plotted in light blue on Fig. 4.
Still, performing mean filtering of classification accuracy over several successive
intervals results in a curve that shows stable progression (the results for LSUN
presented on Fig. 4 are averaged/mean-filtered over 80 successive training inter-
vals). To find the reasons for the training instability in the stream scenario, we
performed a test in a similar scenario with the only difference that the origi-
nal images from the stream were used only to train generative models, while
the classifier was trained with only generated data at the end of each interval
(Fig. 5). The yellow curve on the diagram of Fig. 5 represents the average classi-
fication accuracy as a function of the average number of images (×1000) seen by
each DCGAN. The red and blue lines represent respectively the average accu-
racy over pretrained classes and the average accuracy over the classes appearing
at some point of the stream. We can see on Fig. 5 how the amount of images
fed to the DCGAN improves the classification accuracy: each generative model
received about 1M real images before it started to have a positive influence on
classification training, while after 5M of images per class we do not see global
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Fig. 4. Classification accuracy during online stream training for LSUN dataset. Each
point on the graph corresponds to the average value over 80 training intervals (Color
figure online)

Fig. 5. Average classification accuracy during stream training when the classifier is
trained only on generated data. The curves correspond respectively to the average
performance over all classes (gold), the average performance over classes pretrained
before the beginning of the stream (red), and, the average performance over classes
introduced during the stream (blue) (Color figure online)
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improvements in classification accuracy. The training in such a scenario appeared
to be much more stable than when using a mixture of real and generated data
to train the classifier.

We think that the training instability on the LSUN dataset is due to the
complexity of the database (for the MNIST dataset, the training is rather stable),
but, also, to multiple image rescaling steps rendered necessary by the incapacity
of DCGANs to work directly with full-size 256 × 256 images. The classification
accuracy during training might also be limited due to the fact that we use a
pretrained network on ImageNet to perform the feature extraction step for the
classifier, and that this feature extraction layer is not retrained in our stream
scenario.

4 Conclusions

In this work we presented a new method for online classification on data streams.
We defined streaming scenarios on the MNIST and LSUN datasets, and validated
our online-learning-on-stream method on these datasets by showing that it is able
to efficiently learn to classify complex image data from a time-evolving stream,
with no need to store historical data. We also showed that DCGAN-based models
are able to generate samples representative enough to replace the real data when
training a classifier. Our online-learning-on-stream method showed on one side
a strong capacity to adapt to unseen data classes appearing at different time
of the stream, and, on the other side, did not lead to catastrophic forgetting of
previously seen data.

The current approach requires quite a large amount of data per class which
are not always available in the case of real data streams. We plan to tackle this
problem in a future work by thinking of more reactive and efficient retraining
procedures for the classification model (and eventually the generative models),
able to retrain a network on a few data without forgetting of previously seen
data.
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