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Abstract. Knowledge generalization of ruled-based models, such as
decision trees or decision rules, have emerged from different backgrounds.
This particular kind of models, given their interpretability, offer several
possibilities to be combined. Despite each distinct context, common pat-
terns have emerged revealing the systemic nature of the problem. In this
paper, we look at the problem of generalizing the knowledge contained
in a set of models as a process formalizing the operations that can be
addressed in alternative ways. We also include a set-up to evaluate gen-
eralized models based on their ability to replace the base ones from a
predictive performance perspective, without loss of interpretability.
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1 Introduction

Rules are usually presented in the canonical form of IF antecedent THEN con-
sequent. The antecedent is a conjunction of relational conditions implicating
independent variables to predict the value of a target variable of interest, the
consequent. Rule-based models [14] make use of a set of rules to describe how
independent variables can explain the value of an objective variable. A popular
example are decision trees [9] which offer a flowchart representation of rules pro-
moting easier human interpretation. Another are decision lists [13] which present
ordered rule-sets in the canonical form. Interpretability is an important prop-
erty in domains where a decision support system is able to explain and justify
its decisions [7]. Therefore, the number of organizations using rule-based models
has been increasing.

Generating models to predict or describe a phenomenon in organizations
with a decentralized activity presents challenges. An example is a company that
does its sales through subsidiaries or even by authorized individual distributors.
Each sale is carried out by a single subsidiary which is considered a business
unit of the organization. Another is of a university offering numerous courses
to its students. Each course is offered by a faculty, or a department, which
are further examples of business units. These organizations have their problem
domain broken down into what can be seen as several units, i.e., a decentralized
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context. Such parallelism makes it increasingly common to generate not a single
model but multiple models, each relating to a business unit. In the company
example, each subsidiary can have a model to describe/predict its monthly sales
level. In the university context, each course can have a model to describe/predict
the performance of the students enrolled in it. Yet, the fact that these models
are associated with only one unit makes it hard to find generalized knowledge
representative of the whole organization. In the aforementioned examples, this
could be the overall monthly sales level behavior of the organization or the overall
performance behavior of the students of the university during an academic year.

In this paper, we look at the problem of how to gather and generalize the
knowledge contained in a large number of rule-based models from organizations
with distributed activity. Merging models has been presented in our previous
work [12] as an approach to address the problem. However, it was explained
deeply intertwined within the context of a case study. This entanglement also
occurs in other works, together with distinct vocabulary to describe the same
concepts. It is clear that there are patterns in the intermediate phases of each
approach, even if named differently. We address this abstraction by presenting a
process to generalize rule-based models, such as decision trees or decision rules.

The remainder of this paper is structured as follows. Section 2 presents related
work on generalizing rule-based models. Section 3 describes the process to gen-
eralize rule-based models and Sect. 4 provides a conclusion.

2 Related Work

It is reasonable to differentiate generalizing rule-based models from ensemble
learning, which, at an initial glimpse, may appear similar. Ensemble learning [8]
consists of using the predictions made by a number of base models to make a
single prediction. In contrast, generalizing models consists of using a set of base
models to create a single model, which is the only one making a prediction. The
goals of each technique are also quite different. While in ensemble learning it is
focused on improving accuracy, in generalizing models it is concerned in obtain-
ing aggregated models without significantly affecting accuracy. Moreover, model
interpretability is a goal per se for generalizing models but not for ensemble
learning.

Approaches to generalizing models fall into two major categories: analytical
and mathematical. Analytical approaches were first introduced by Williams [15]
and consist of breaking down a set of models into rules and then assemble them in
order to create a generalized model. On the other hand, mathematical approaches
consist in applying a mathematical function to a group of models which results
in the generalized model. The process described in this paper fits in the context
of analytical approaches.

Analytical approaches emerged essentially from two contexts. The first was
to create models for systems based on distributed environments, i.e., where the
data sources were scattered across different locations. The problem was pre-
sented as “mining data that is distributed on distant machines, connected by
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low transparency connections” [2]. The second was a consequence of the growth
in the amount of data collected by information systems. It became necessary to
create models that could manage large datasets [7]. At the time there was a lack
of available resources to handle the task, being described as “a very slow learning
process sometimes overwhelming the system memory” [4] or “the emergence of
datasets exceeding available memory” [1].

In problems with naturally distributed data, every location has its own local
dataset with identical format and structure. These are moved over a channel
to a centralized location where they are joined into a monolithic dataset, i.e., a
non-distributed dataset stored in a single location. A generalized model is then
created using all available data. Still, such scenario presents a major problem:
moving data may be unsafe, expensive or simply impossible due to its large
volume. An alternative of moving data is to move the models instead. Models are
created in each location, then moved through a channel to a centralized location,
where they are combined in a generalized model [2]. In problems with the need to
create models from large datasets, it is essential to artificially create distributed
data. This is achieved by breaking down a large dataset into as many individual
datasets as necessary until it becomes possible to create a model for each [1].
Under such circumstances, all base models are combined into a generalized one.

Contrarily to analytical approaches, mathematical approaches are quite dif-
ferent from each other and were designed to solve specific problems. Kargupta
and Park [6], motivated by the need to analyse and monitor time-critical data
streams using mobile devices, proposed an approach to combine decision trees
using the Fourier Transform. As the decision tree is a function, it can be rep-
resented in a frequency domain, resulting in the model spectrum. Models are
combined by the adding their spectra. Gorbunov and Lyubetsky [3] combine
models by constructing a supertree, the “nearest” on average to a given set of
trees. The method is tested on the domain of analysis of the evolution trees of
different species. In this context, the problem is to map a set of gene trees into
a species tree (the average tree). Shannon and Banks [10] describe Maximum
Likelihood Estimate (MLE) to combine a set of classification trees into a single
tree by finding a central tree. The approach was applied to a set of classification
trees obtained from biomedical data.

3 Generalization of Rule-Based Models

Generalization of rule-based models is presented as a sequential process with
abstract parts and a few that can be specialized. Given a set of datasets
(D1, . . . , Dn), the corresponding base models (M1, . . . ,Mn) are trained and eval-
uated (using metric ηi). Then, all the base models are organized into groups
(G1, . . . , Gk) with a generalized model being created for each group (Ω1, . . . , Ωk).
Finally the generalized models are evaluated using previously unused parts of
the base models datasets (with metric σi). Figure 1 depicts a high-level view of
the experimental set-up of the process, while Algorithm1 presents it in more
depth.
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Fig. 1. Experimental set-up

A preliminary task of the process is the creation of 10 folds for each dataset
({f1

i , ..., f10
i } ∈ Di). Each generalized model has to be evaluated using unseen

data, i.e., data not used in the creation of base models. As each base model is
to provide rules to a generalized model, one fold of its associated dataset is put
aside destined to incorporate a test dataset to evaluate that same generalized
model. As a consequence, to ensure it remains new data, this fold (denoted as
λ) is never included in the data for creating or evaluating base models. Instead
of choosing a specific fold, the process of generalizing models and subsequent
evaluation is performed 10 times, each using a different fold. Each fold maps in
an iteration (λ) of the evaluation cycle. Base models (Mλ

i ) are created and then
evaluated using the data in all folds except the λ fold (Di \ fλ

i ).

Algorithm 1. Process to Generalize Rule-based Models
Input: Datasets = {D1, . . . , Dn}
Output: Improvement scores = {σ1, . . . , σk}
for λ such that 1 ≤ λ ≤ 10 do

for i such that 1 ≤ i ≤ n do
{Mλ

i , ηλ
i } ← TrainEvaluateBaseModel(Di \ fλ

i )
end for
{Gλ

1 , . . . , Gλ
k} ← CreateGroupsBaseModels({Mλ

1 , . . . , Mλ
n })

for j such that 1 ≤ j ≤ k do
Ωλ

j ← GeneralizeBaseModels(Gλ
j )

σλ
j ← EvaluateGeneralizedModel(Ωλ

j , {fλ
1 , . . . , fλ

p }, {ηλ
1 , . . . , ηλ

p })
end for

end for
for j such that 1 ≤ j ≤ k do

σj ← 1
10

10∑

λ=1

σλ
j

end for

All base models are then organized into groups (Gλ
j ), each to yield a general-

ized model (Ωλ
j ). Next, the evaluation test folds are assembled as test dataset for

the generalized model ({fλ
1 , . . . , fλ

p }). The evaluation procedure takes the gen-
eralized model, the test dataset and the base models performances ({ηλ

1 , . . . , ηλ
p }
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(p denoting the number of models in the group) resulting in an improvement
score of the generalized model (σλ

j ). This aim of this metric is to estimate whether
there is gain (if positive) or loss (if negative) in predictive quality relative to the
base models. Finally, as the evaluation cycle is replicated 10 times, the improve-
ment scores of each generalized model are averaged across all iterations yielding
the overall improvement score (denoted as σj).

3.1 Train and Evaluate Base Models

Models are rule-based classifiers, i.e., a set of IF-THEN rules. Due to one of the
folds being reserved for evaluating the generalized model, base models are evalu-
ated using 9-fold cross-validation set-up [11]. The evaluation score is conceptually
denoted as ηi (which may be embodied, for example, with the F1-score [5]).

3.2 Create Groups of Base Models

In this procedure, the base models are gathered into groups. Models can be
grouped reflecting a business driven criterion. For example, if a company is
interested in knowing the performance of sales of its subsidiaries, it may want to
group the models by geographic zone. Alternatively, there are applications where
the creation of groups may be completely automated. An example is by criteria
related to the complexity of the model, as the number of rules. In such cases,
clustering techniques can be used to assist the creation of the groups. There may
be applications where there is no need to create groups. Nevertheless, in order
to maintain the process generic, it is considered that there is a single group with
all the models.

3.3 Generalize Base Models

In this procedure, the base models in each group are generalized resulting in a
new model, as described in Algorithm 2. Keeping up with the generality, it is
required for the process to be independent of the language of the base models. In
other words, it should be applied whether rules are extracted from decision trees
or laid out in any other format. A possibility is for rules to be be represented
as rows in a decision table with columns specifying the independent (xi) and
target (ŷ) variables. Therefore, before pursuing the combination of base models
(M), these are converted to decision tables (denoted as T ), and then general-
ized sequentially. Depending on the approach chosen to combine decision tables,
there may be circumstances that generate an empty decision table. If so, the
procedure skips that attempt and carries on selecting the next decision table to
combine with the last one that succeeded (Tω). After all the decision tables in
the group are scanned, the final generalized decision table is converted back into
the same language as the base models, yielding the generalized model (Ω). The
next subsections detail these operations.
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Algorithm 2. Generalize base models
Input: Group of base models {M1, . . . ,Mp}
Output: Generalized model Ω
Tω ← ExtractRules(M1)
for i such that 2 ≤ i ≤ p do

Tθ ← CombineRules(Tω, ExtractRules(Mi))
if Tθ �= Ø then

Tω ← Tθ

end if
end for
Ω ← BuildModel(Tω)

Extract Rules. This operation extracts the underlying rules of a model as rows
in a decision table (T ), using an approach in accordance with its language.

Combine Rules. This operation attempts to combine the rules if a pair of
decision tables (T1 and T2) into one (Tθ), with the steps presented in Algorithm 3.

Algorithm 3. Combine rules
Input: Decision tables T1 and T2

Output: Combined decision table Tθ

Tθ ← CreateRules(T1, T2)
if Tθ �= Ø then

Tθ ← JoinRules(ResolveConflicts(Tθ))
end if

The operation Create rules implies a specific approach to derive the rules of
the combined table. A common example is the intersection of the inner product
of the rules of both tables [1,2,12]. The operation is replicated until all rules
from both tables are combined. A possible consequence is that none of the rules
of both tables overlap, resulting in the intersection to be an empty set. If this
occurs the process stops. Although the operation is illustrated with intersection,
it is important to highlight that it is generic, i.e., it can be carried out with any
another function. A conflict exists if a pair of overlapping rules of T1 and T2 do
not agree on the target variable value. The operation Resolve conflicts selects, for
each conflict found, which value should be set to the target variable of the new
rule. For example, an approach is to assign the target value of the rule covering
the larger volume in the multidimensional decision space [1]. Another is to select
the one created with more examples [12]. After this operation, the resulting
decision table has no conflicts. The operation Join rules attempts to decrease
the number of rules by identifying adjacent rules in the multidimensional decision
space sharing the same class in the target variable. These can be joined together,
thus reducing the number of rules.
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Build Model. This operation converts a decision table back to the base model
representation. For example, if the base models are decision trees, then the gen-
eralized model should also be a decision tree. This task presents unexpected chal-
lenges. An inevitable consequence of repeatedly changing and removing decision
rules along the combination process is a final decision table frequently failing
to cover the entire multidimensional space. An approach consists in artificially
generating examples falling into each decision region of the final generalized deci-
sion table Tω [12]. The examples of all rules are gathered in a dataset DTω from
which a model is trained (Ω).

3.4 Evaluate Generalized Models

In this procedure, a generalized model is evaluated following the steps in Algo-
rithm 4. The predictive quality of the generalized models is measured by an
improvement score (denoted as σ).

Algorithm 4. Evaluate generalized model
Input: Gener. model = Ω, Test folds = {fi, . . . , fp}, Perf. base models = {ηi, . . . , ηp}
Output: Improvement score of generalized model = σ
for i such that 1 ≤ i ≤ p do

Δi ← EvaluateModel(Ω, fi) − ηi

end for

σ ← 1
p

p∑

i=1
Δi

The fold that was put aside in each base model is used as test data to eval-
uate the generalized model. Evaluation consists in using the generalized model
to make predictions on the test data and then comparing them with the true
values of the target variable. The evaluation metric has to be the same as the
one used to evaluate base models (e.g. if the F1-score was chosen to evaluate
base models, then it should also be used to evaluate the generalized ones). As
the aim is to estimate the variation in predictive quality of replacing the base
models with a generalized one, the difference of performances (Δi) is assessed. If
positive, then the generalized model performs better than the base model, oth-
erwise, it performs worse. The cycle is replicated for all folds coming from each
dataset of the base models associated with the generalized model. The overall
performance of the generalized model results from the average of the differences
of performances relative to all base models (σ) in the original group.

4 Conclusions

Generalizing rule-based models has emerged from approaches to solve different
problems in particular contexts. Analytical approaches, which separate the rules
of a set of models and then recombine them, although presented in a variety



36 P. Strecht et al.

of forms, can be abstracted to a generic method. The main contribution of this
paper is to describe a process that sequences the main procedures and then
identifies the operations that can be deployed in different ways.

The representation of models as a set of decision rules facilitates the pro-
cess of generalizing them. Then, the sub-problems of how to combine decision
rules, resolve class conflicts of the target variable in overlapping rules, and build
the generalized rule-based model remains open to different approaches, without
loss of generality. Generalized models are evaluated by assessing their ability to
replace the base models. Although the set-up to evaluate generalized models is
part of the process, the evaluation metric itself is generic.

References

1. Andrzejak, A., Langner, F., Zabala, S.: Interpretable models from distributed data
via merging of decision trees. In: Proceedings of the 2013 IEEE Symposium on
Computational Intelligence and Data Mining. IEEE (2013)

2. Bursteinas, B., Long, J.: Merging distributed classifiers. In: Proceedings of the 5th
World Multiconference on Systemics, Cybernetics and Informatics (2001)

3. Gorbunov, K., Lyubetsky, V.: The tree nearest on average to a given set of trees.
Probl. Inf. Transm. 47(3), 274–288 (2011)

4. Hall, L., Chawla, N., Bowyer, K.: Combining decision trees learned in parallel. In:
Working Notes of the KDD-97 Workshop on Distributed Data Mining, pp. 10–15
(1998)

5. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Morgan
Kaufmann, San Francisco (2011)

6. Kargupta, H., Park, B.: A fourier spectrum-based approach to represent decision
trees for mining data streams in mobile environments. IEEE Trans. Knowl. Data
Eng. 16, 216–229 (2004)

7. Maimon, O., Rokach, L.: Data Mining and Knowledge Discovery Handbook, 2nd
edn. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-09823-4

8. Opitz, D., Maclin, R.: Popular ensemble methods: an empirical study. J. Artif.
Intell. Res. 11, 169–198 (1999)

9. Quinlan, J.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
10. Shannon, W.D., Banks, D.: Combining classification trees using MLE. Stat. Med.

18(6), 727–740 (1999)
11. Stone, M.: Cross-validatory choice and assessment of statistical predictions. J. Roy.

Stat. Soc.: Ser. B 36(2), 111–147 (1974)
12. Strecht, P., Mendes-Moreira, J., Soares, C.: Merging decision trees: a case study in

predicting student performance. In: Luo, X., Yu, J.X., Li, Z. (eds.) ADMA 2014.
LNCS (LNAI), vol. 8933, pp. 535–548. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-14717-8 42

13. Weiss, S., Indurkhya, N.: Optimized rule induction. IEEE Expert 8(6), 61 (1993)
14. Weiss, S.M., Indurkhya, N.: Rule-based machine learning methods for functional

prediction. J. Artif. Intell. Res. 3, 383–403 (1995)
15. Williams, G.: Inducing and combining multiple decision trees. Ph.D. thesis, Aus-

tralian National University (1990)

https://doi.org/10.1007/978-0-387-09823-4
https://doi.org/10.1007/978-3-319-14717-8_42
https://doi.org/10.1007/978-3-319-14717-8_42

	Generalizing Knowledge in Decentralized Rule-Based Models
	1 Introduction
	2 Related Work
	3 Generalization of Rule-Based Models
	3.1 Train and Evaluate Base Models
	3.2 Create Groups of Base Models
	3.3 Generalize Base Models
	3.4 Evaluate Generalized Models

	4 Conclusions
	References




