
Sparsity in Deep Neural Networks - An
Empirical Investigation with TensorQuant

Dominik Marek Loroch1,2(B), Franz-Josef Pfreundt1, Norbert Wehn2,
and Janis Keuper1,3

1 Fraunhofer ITWM, Kaiserslautern, Germany
dominik.loroch@itwm.fhg.de

2 TU Kaiserslautern, Kaiserslautern, Germany
3 Fraunhofer Center Machine Learning, St. Augustin, Germany

Abstract. Deep learning is finding its way into the embedded world
with applications such as autonomous driving, smart sensors and aug-
mented reality. However, the computation of deep neural networks is
demanding in energy, compute power and memory. Various approaches
have been investigated to reduce the necessary resources, one of which
is to leverage the sparsity occurring in deep neural networks due to the
high levels of redundancy in the network parameters. It has been shown
that sparsity can be promoted specifically and the achieved sparsity can
be very high. But in many cases the methods are evaluated on rather
small topologies. It is not clear if the results transfer onto deeper topolo-
gies.

In this paper, the TensorQuant toolbox has been extended to offer
a platform to investigate sparsity, especially in deeper models. Several
practical relevant topologies for varying classification problem sizes are
investigated to show the differences in sparsity for activations, weights
and gradients.

Keywords: Deep neural networks · Sparsity · Toolbox

1 Introduction

For the past few years, deep learning had a high impact on machine learn-
ing. Many diverse applications have emerged in virtually all fields of research
and everyday life. Initially being a high-performance computing problem, deep
learning is finding its way into the mobile and embedded world with applications
such as autonomous driving, smart sensors and augmented reality, just to name
a few. There is a huge potential behind deep learning in the embedded world,
where more and more of the heavy workload is moved to the device, known as
edge computing.

However, the computation of deep neural networks (DNN) is very resource
heavy in energy, compute power and memory, in both space and bandwidth.
These problems have been circumvented by moving the data from the generating
c© Springer Nature Switzerland AG 2019
A. Monreale et al. (Eds.): ECML PKDD 2018 Workshops, CCIS 967, pp. 5–20, 2019.
https://doi.org/10.1007/978-3-030-14880-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14880-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-14880-5_1

6 D. M. Loroch et al.

device at the edge to a centralized computation unit (i.e. cloud service). But
as the number of devices and the demands for low latency increase, moving
large amounts of data away from the device becomes infeasible. The training of
deep networks on distributed embedded systems is even more demanding, as it
requires to send updates of all weights between the workers.

A key observation is that a large portion of the parameters in a neural network
are redundant. If the operations and activations that are not necessary can be
identified, this can make the calculation more efficient and save energy. It has
been shown that models can be compressed by a factor of over 30 [1].

1.1 Related Work

There have been several ideas on how to enable deep learning on the edge by
removing redundancy. A very well received approach is to use topologies which
are specifically designed to be very lean and thus avoid redundancy by design
[2–4]. This approach has a high popularity for mobile applications.

Instead of looking at the efficiency problem from an algorithmic side, the
hardware can be adapted to be very efficient for computations required by DNNs.
The calculation of the operations in a layer can be moved to a co-processor.

An option are FPGAs, which allow to design a specialized hardware archi-
tecture for DNNs, but at much less effort than building a computer chip from
scratch. There are several examples of FPGA implementations dealing with
redundancy in DNNs [5–10]. FPGAs consume little energy, therefore they are
good candidates for embedded applications.

Redundancy reduction can also be seen in the context of distributed systems.
Training DNNs on such systems is an active field of research [11–13]. A prob-
lem is the transfer of the weight updates in the form of gradients between the
different nodes. Redundancy appears in weight updates which have no effect on
the convergence of the training. If that information can be prevented from being
transferred, it can save bandwidth [14–17]. It has been shown that compression
ratios of up to 600 in memory size are possible [18].

1.2 Contribution

All of the approaches above can be interpreted as a way to introduce and leverage
sparsity in deep neural networks. Sparsity is the ratio of zero-value elements to
all elements. This concept is applicable most directly to the weights in a neural
network, but also reducing the number and shape of layers can be interpreted
as a form of sparsity leveraging.

The results for novel methods found in literature often use small topologies
and simple datasets as a proof of concept. It is not clear if those results transfer
well to bigger models, i.e. if these methods scale. For hardware accelerators,
which have to rely on a certain amount of sparsity in order to be efficient, it
is crucial to know if a certain topology is able to deliver unchanged results
with a sparse representation of the data. There is a need for a methodology

Sparsity in Deep Neural Networks 7

that can investigate the potential in sparsity of a model prior to the hardware
implementation.

This paper extends the capabilities of TensorQuant1 [19], which is an open-
source toolbox for TensorFlow [20]. It can be used to investigate sparsity in
custom topologies and datasets with very little changes to the original files
describing the model. The contributions in this paper are:

– Sparsity is studied in several convolutional neural network (CNN) topologies
of varying sizes. The differences in the sparsity of the activations and weights
during inference are investigated.

– The sparsity of the gradient during training is examined. This shows which
level of accuracy can be expected for different gradient sparsity levels, if no
additional methods are applied to guide the training process.

– TensorQuant is extended and used to provide an easy way to access and
manipulate the layers in a DNN for sparsity experiments. It offers an open
platform to test and compare various methods which rely on tensor alteration,
including sparsity.

This work puts methods which leverage sparsity into perspective, as it shows
what level of sparsity can already emerge from using regular methods.

Section 2 introduces the used terms and methods in this paper. It gives a brief
overview of TensorQuant and how it can help to investigate sparsity. In Sect. 3
experiments are conducted, which show to which degree sparsity is emerging in
CNNs, applying regular methods for training and inference.

2 Methods

A neural network layer is defined as

zl = f(xl,Wl), (1)

where xl is the input, zl is the activation and Wl is a set of weights in the layer l.
f is a non-linear function, called activation function. A neural network is trained
by minimizing some loss function L(W), which can include terms for L1 and L2
regularization [21]. The optimization step is

wt+1 = wt − λ
∂L
∂wt

(2)

for every weight w in the neural network. ∂L
∂wt

is referred to as the gradient, and
it is scaled with some learning rate λ before applied to the weight as an update.

1 www.tensor-quant.org.

www.tensor-quant.org

8 D. M. Loroch et al.

2.1 Sparsity

Sparsity is defined as the ratio of zero-value elements to all elements. The sparsity
of a layer is

sl =
|{w | w = 0,w ∈ Wl}|

|Wl| . (3)

In a large model comprising of many layers it helps to group layers in a logical
hierarchy, referred to as a block

B = {l | for some arbitrarily chosen l}. (4)

Then the sparsity of that block is the number of all zero weights divided by the
number of weights belonging to that block

sb =
∑

l∈B |Wl| sl
∑

l∈B |Wl| , (5)

with B being the set of all layers belonging to the logical block. The total sparsity
of a model can be calculated similarly, but summing over all layers in all blocks.

The gradients of the weights are grouped in the same way as the weights
themselves and their sparsity is computed in the same manner.

The activation sparsity is different from the weights and gradients. It always
refers to the last activation of a block, without considering the other layers within
the block as in Eq. (5). It is defined similar to Eq. (3), but by counting over the
activation values z instead of weights w.

2.2 Enforcing Sparsity

When using a ReLU as the activation function, sparsity emerges in the activa-
tions to a high degree. For the weights and gradients, however, it is very unlikely
that even one of their values is exactly zero. Applying Eq. (3) will always result
in zero sparsity, as the filters are, in fact, dense. Therefore, it is necessary to
enforce sparsity. One method is to select a certain number of elements with the
highest magnitude and set the other ones to zero [22]. Another way is to use a
threshold for the magnitude and to set all the values below it to zero. The latter
approach is used in this paper.

2.3 TensorQuant

TensorQuant is a toolbox for TensorFlow, originally designed to investigate the
effects of quantization on deep neural networks [19]. One of its distinct features
is that it can manipulate the tensors in a network to a very deep level, without
much changes to the files describing the model. Manipulation is performed by
looping in additional operations at specific locations. TensorFlow allows to intro-
duce userdefined C++ kernels as additional tensor operators. In TensorQuant,
those operations are referred to as quantizers. Thus, a quantizer or kernel can

Sparsity in Deep Neural Networks 9

Fig. 1. Overview of the TensorQuant workflow. The user provides a python dictionary,
which maps variable scopes to quantizer objects. Minor changes need to be applied to
the file describing the topology, so that TensorQuant can loop in the quantizers at the
desired locations.

be designed which sets all entries to zero whose magnitude is below a certain
threshold. By incorporating this operation into a model, the weights, activations
and gradients can be sparsified.

The lowest level where tensors can be manipulated in the context of quan-
tization is referred to as intrinsic quantization. Every layer is broken down to
its tensor operations. The tensors passing from one operation to the next are
quantized at every step in order to assure that the precision of the intermediate
result never exceeds the one of the data format to be emulated. This way, Ten-
sorQuant can emulate low-bitwidth operations, specifically in the convolution
layers of CNNs.

Another location where tensor manipulation can be applied is just at the
output of a layer. In the context of quantization, this is called extrinsic quanti-
zation, and it is the location where activation sparsification can be introduced.
The weights can be manipulated just before they are passed to the operations,
which allows to sparsify weights. Also the gradients can be sparsified before they
are being applied to the weights as updates.

TensorQuant uses the TensorFlow slim framework to provide a variety of
utility functions. TensorQuant extends this framework by adding several addi-
tional functionalities which ease the access to the layers. See Fig. 1 for an
overview of the workflow. The layers in TensorFlow are tagged with so called

10 D. M. Loroch et al.

variable scopes. If a python dictionary is provided which maps these scopes
to quantizers, TensorQuant automatically applies tensor manipulation to the
desired locations. Every layer and block can have their own quantizer. This
automatism allows very deep topologies to be quantized easily with arbitrary
granularity.

As for now, the TensorQuant slim utility collection is made for CNNs and
classification tasks. However, TensorQuant can be used on a much broader class
of deep learning topologies.

Using the emulation capabilities of TensorQuant comes at the cost of degrad-
ing the runtime. As for now, this renders training in combination with intrinsic
quantization infeasible. Applying extrinsic quantization is much less problematic,
so that training with sparsifying operators is not a problem.

3 Experiments

This section investigates the effects of sparsity enforcement on some CNN clas-
sifiers. The choice of topologies reflects different difficulty levels. AlexNet [23]
and ResNet 50 [24] are trained on the ILSVRC12 ImageNet [25] dataset, which
is the most difficult task in this paper. ResNet 14 and CifarNet [26] are trained
on the CIFAR 100 and 10 [27] dataset, respectively. These two are considered to
be medium and low level problems. Finally, the MNIST dataset is used to train
LeNet [28], which is considered to be a trivial problem.

AlexNet and CifarNet use dropout [29], whereas the Inception and ResNet
topologies use batch normalization [30]. All topologies use ReLUs as activation
functions. These special layers can have an additional impact on the sparsity,
but which is not investigated in this paper.

The naming convention of the layers is as follows: “conv” refers to a sin-
gle convolution layer, “logits” and “fc” to fully connected ones. In the ResNet
topologies, a “block” is a logical block comprising of convolution layers with the
same number of input and output filters. A “unit” comprises of a bottleneck
layer [24], which has three convolutions plus a shortcut connection.

3.1 Sparsity of Activations and Weights

If the weights of a DNN model are sparse, the required memory to store the
model can be decreased. A high sparsity in activation values can decrease the
computation time, even if the weights are not sparse. Therefore it is interesting
to look at the sparsity of weights and activations. Normally, a L2 regularizer is
used during training. It is known that a L1 regularizer promotes sparsity in the
weights, although it makes convergence to an optimum more difficult and there-
fore it is less often used. This section shows the different sparsity levels between
a variety of CNN topologies, trained with L1 and L2 regularizers, respectively.
The focus of this section is on the inference.

First, the network is trained without any sparsity enforcement with either L1
or L2 regularization. As explained in Sect. 2.2, weights are not sparse as they are,

Sparsity in Deep Neural Networks 11

so sparsity needs to be enforced, e.g. with thresholding. The objective here is to
set as many weights to zero without retraining, so that the test accuracy is not
changed. To obtain a high total sparsity, each layer or block has its own threshold.
They are found with a grid search approach, by going through all layers or blocks
iteratively. For each layer, the highest threshold is found which leaves the test
accuracy unchanged. Meanwhile, the other layers are not sparsified. For the test
accuracy, all thresholds for all layers are applied at once. The values for the test
accuracies are stated in the captions of the respective figures, relative to the L2
test accuracy without sparsification.

Although activations could be sparsified with the same method, it has proven
to be rather ineffective in our experience. The sparsity which comes from the
ReLU activation functions is already high and further thresholding does not have
much effect.

Table 1. LeNet weight and activation sparsity after training with L1 and L2 regular-
izer. The relative test accuracies are L1 99.0% and L2 99.8%.

Layer L2 weights L1 weights L2 activations L1 activations

conv1 0.142 0.289 0.717 0.513

conv2 0.491 0.505 0.528 0.662

fc3 0.258 0.502 0.661 0.593

fc4 0.258 0.504 0.000 0.000

Table 1 shows the weight and activation sparsities for LeNet trained with
L1 and L2 regularization, respectively. L1 increases the sparsity of weights in
every layer, especially in the last two fully connected layers. The activations
change in sparsity as well, though there is no general trend. The last layer is the
classification output, so it is no surprise that the sparsity is zero. Notice that in
LeNet the test accuracy is higher with L1 regularization than for L2.

Table 2. CifarNet weight and activation sparsity after training with L1 and L2 regu-
larizer. The relative test accuracies are L1 101.8% and L2 98.4%.

Layer L2 weights L1 weights L2 activations L1 activations

conv1 0.064 0.117 0.683 0.665

conv2 0.226 0.754 0.854 0.837

fc3 0.164 0.623 0.781 0.797

fc4 0.563 0.501 0.649 0.458

logits 0.862 0.120 0.000 0.000

CifarNet in Table 2 shows a more dramatic increase in weight sparsity in
some of its layers. But surprisingly, the sparsity in the last layer dropped a lot.
The activation sparsities, however, are mostly unchanged between L1 and L2.

12 D. M. Loroch et al.

Table 3. ResNet 14 weight and activation sparsity after training with L1 and L2
regularizer. The relative test accuracies are L1 93.2% and L2 99.6%.

Layer L2 weights L1 weights L2 activations L1 activations

conv1 0.051 0.382 0.285 0.273

block1/unit 1 0.188 0.390 0.428 0.407

block1/unit 2 0.074 0.501 0.274 0.257

block2/unit 1 0.058 0.313 0.673 0.699

block2/unit 2 0.056 0.349 0.766 0.745

logits 0.028 0.233 0.000 0.000

Table 4. AlexNet weight and activation sparsity after training with L2 regularizer.
The relative test accuracy is L2 98.0%.

Layer L2 weights L2 activations

conv1 0.161 0.604

conv2 0.177 0.804

conv3 0.177 0.825

conv4 0.406 0.863

conv5 0.219 0.920

fc6 0.524 0.817

fc7 0.730 0.838

fc8 0.474 0.000

The ResNet 14 topology in Table 3 exhibits a very low weight sparsity for
L2 and rises only moderately with L1. The activation sparsity does not change
between L1 and L2, as it was the case with CifarNet.

Training AlexNet with a L1 regularizer is difficult, and even when incorpo-
rating a mixed L1-L2 regularization, the results remain poor, so only the results
for L2 regularization are shown. The L2 weight sparsity for AlexNet in Table 4
is low for most of the convolution layers, but high for the fully connected ones.
The activation sparsity is very high in all layers.

ResNet 50 also trains poorly with the L1 regularizer. For L2, Table 5 shows
that the weight sparsity is not high for most of the layers. Activation sparsity
is rather low. The “unit 1” layers in every block have the highest activation
sparsity, except for the layers in block 4, where it is very high in all units.

Table 6 gives an overview of the total weight sparsities for L1 and L2 regu-
larization. It shows that for simpler problems, it is easy to achieve high sparsity
even with simple regularization methods. In all topologies, the weight sparsity is
lower than the one for activations, which agrees with observations made in other
work [5,17,31,32]. Identifying layers with sparse activations contains valuable
information for model parallelism. They are good locations to cut the topology

Sparsity in Deep Neural Networks 13

Table 5. ResNet 50 weight and activation sparsity after training with L2 regularizer.
The relative test accuracy is L2 99.6%

Layer L2 weights L2 activations

conv1 0.073 0.301

block1/unit 1 0.378 0.359

block1/unit 2 0.369 0.236

block1/unit 3 0.359 0.214

block2/unit 1 0.122 0.493

block2/unit 2 0.489 0.343

block2/unit 3 0.126 0.304

block2/unit 4 0.125 0.268

block3/unit 1 0.177 0.542

block3/unit 2 0.344 0.417

block3/unit 3 0.178 0.369

block3/unit 4 0.370 0.336

block3/unit 5 0.391 0.306

block3/unit 6 0.210 0.270

block4/unit 1 0.242 0.735

block4/unit 2 0.510 0.737

block4/unit 3 0.265 0.824

logits 0.127 0.000

Table 6. Overview of total weight sparsity after training with L1 and L2 regularizer.

Layer L2 L1

LeNet 0.262 0.502

CifarNet 0.185 0.624

ResNet 14 0.062 0.326

AlexNet 0.573 –

ResNet 50 0.291 –

into subgraphs, which can be put on separate nodes in a distributed system.
This allows to minimize the amount of data which needs to be transferred. For
instance, the “unit 1” layers of each block in ResNet 50 would be good separation
points.

3.2 Sparsity of Gradients During Training

When training on a distributed system, the sparsity in the gradients can help to
reduce the amount of data which needs to be transferred to compute an update.

14 D. M. Loroch et al.

So in this section, the sparsity of the gradient is investigated during training.
Similar to the weights, sparsity needs to be enforced. In a single training run,
the same threshold is applied to all gradients in every step. L2 regularization is
used during training.

Fig. 2. Comparison of absolute test accuracy versus the applied gradient threshold
during training.

Figure 2 shows the final test accuracy and the total gradient sparsity towards
the end of the training versus the applied gradient threshold. All training runs
have the same number of iterations as the baseline. A threshold of zero indicates
the baseline. AlexNet is more susceptible for sparsified gradients than the ResNet
topologies. For ResNet14, the sparse gradients have a regularizing effect, so the
test accuracy increases above the baseline if the threshold is not too high. Such a
regularizing effect has also been observed in other work [22]. CifarNet is mostly
unchanged similarly to ResNet 14, but does not show the same regularizing
effect. The LeNet topology is almost unchanged for the investigated thresholds.

The gradient sparsity can be almost 100% for LeNet and the model can
still learn fine. This indicates that MNIST on LeNet is a rather trivial problem.
AlexNet shows a steady decline in test accuracy with an increasing threshold.
CifarNet and the two ResNet architectures have a jump in gradient sparsity,
but where the test accuracy does not change much. ResNet 50 can achieve 80%
baseline accuracy at a gradient sparsity of 85%. This suggests that there is a
sweet spot for the gradient threshold, which allows for very high sparsities in
those topologies.

Figures 3, 4, 5, 6 and 7 show how the gradient sparsity evolves during train-
ing for individual layers or blocks. The weights are initialized with a gaussian
distribution. AlexNet, LeNet and CifarNet are trained with a batch size of 128,

Sparsity in Deep Neural Networks 15

and 32 for the ResNet topologies. The gradient thresholds are chosen in such a
way that the final test accuracy is close to the baseline accuracy, but also that
there is some visible gradient sparsity. The gradient thresholds and achieved
accuracies are stated in the captions of the figures.

Fig. 3. LeNet gradient sparsity of different layers during training. The achieved test
accuracy is 99% of the baseline. The gradient threshold is 10−3.

The layerwise gradient sparsity for LeNet is shown in Fig. 3. The gap between
the first layer and fc3 is striking. This suggests that conv1 holds the most infor-
mation, whereas fc3 is redundant.

The evolution of the gradient sparsities in CifarNet differ somewhat from
LeNet, even though the topologies are very similar. There is a very high peak in
sparsity at a very early phase of the training, except for the logits layer. Each
layer seems to converge towards a certain sparsity level, where the fc3 layer,
which is in the middle of the topology, has the highest sparsity.

Resnet 14 in Fig. 5 comprises almost entirely of convolution layers, only the
last layer is fully connected. All gradient sparsities increase rapidly in the first
epoch, then they show a decreasing trend. The logits layer has a higher sparsity
than all the other layers. Different to the two topologies before, the convolution
layers exhibit a similar, low sparsity. The decreasing trend in gradient sparsity
seems to contradict the fact that the gradient is becoming flatter the closer
the weights converge to an optimum. However, the decrease in gradient sparsity
only means that the number of non-zero elements is increasing, it does not imply
anything about the magnitude of the gradient itself. A possible explanation is
that the gradient is pointing more equally into multiple dimensions when it gets
closer to an optimum than at the beginning of the training.

16 D. M. Loroch et al.

Fig. 4. CifarNet gradient sparsity of different layers during training. The achieved test
accuracy is 97% of the baseline. The gradient threshold is 10−3.

Fig. 5. ResNet 14 gradient sparsity of different layers during training. The achieved
test accuracy is 105% of the baseline. The gradient threshold is 10−3.

For AlexNet in Fig. 6, the fully connected layers show a more pronounced
gap to the convolution layers than the topologies before. The fully connected
layers also have a more unique behavior. There is an initial decline in sparsity
in the beginning, followed by an increase after a few epochs. Then, the gradient

Sparsity in Deep Neural Networks 17

Fig. 6. AlexNet gradient sparsity of different layers during training. The achieved test
accuracy is 80% of the baseline. The gradient threshold is 10−4.

Fig. 7. ResNet 50 gradient sparsity of different layers during training. The achieved
test accuracy is 96% of the baseline. The gradient threshold is 10−4.

18 D. M. Loroch et al.

sparsities converge toward different levels. The seemingly same sparsity level for
the convolution layers is a artifact introduced by the chosen threshold. A higher
value would spread out the sparsity levels, which is not shown here.

ResNet 50 in Fig. 7 is similar to ResNet 14, but there is a bigger gap between
the sparsity level of the last, fully connected layer and the other convolutional
ones. Also, the gradient sparsity for the last fully connected layer goes up instead
of down.

The figures above give a good overview of the relative behavior of the gra-
dient sparsities of different layers. The absolute values of the sparsities are less
meaningful, since the thresholds are chosen rather arbitrarily (Fig. 2 is a better
reference in that regard). The most striking result is that the gradient sparsity
of convolution layers decreases in the more complex topologies, which seemingly
contradicts the fact that the gradient becomes flatter.

4 Conclusion

Experiments have been conducted on a selection of CNN topologies, showing
sparsity for weights, activations and gradients under changing problem size.
Although all of them are CNN classifiers, there are differences in where and
to which degree sparsity emerges, especially in the gradients during training.
The training of LeNet on MNIST has been shown to be a trivial problem, which
requires almost no gradient information to be trained close to 100% test accuracy.
Therefore, results obtained from a less complex topology cannot be transferred
to deeper networks. It is necessary to investigate sparsity for each topology and
sparsifying method on their own in order to get meaningful information about
sparsity.

In many cases there already is a moderate degree of sparsity in the regularly
trained versions of the models. The application of additional methods to promote
sparsity can increase the levels beyond the results shown here, but this paper
serves as a reference point for what can be expected from the baseline model.

Our results back the idea of implementing sparse arithmetics on embedded
devices, since the redundancy in form of sparsity can be leveraged through special
hardware architectures. TensorQuant can help in the investigation of sparsity in
deep neural networks by identifying where sparsity emerges to a high degree. The
information obtained from this can guide the design of sparse arithmetics hard-
ware accelerators. TensorQuant is open-source and freely available on GitHub
(See footnote 1).

References

1. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural net-
works with pruning, trained quantization and Huffman coding (2015)

2. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.:
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model
size (2016)

Sparsity in Deep Neural Networks 19

3. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile
vision applications (2017)

4. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolu-
tional neural network for mobile devices (2017)

5. Zhu, J., Jiang, J., Chen, X., Tsui, C.Y.: SparseNN: an energy-efficient neural
network accelerator exploiting input and output sparsity. CoRR, abs/1711.01263
(2017)

6. Han, S., et al.: EIE: efficient inference engine on compressed deep neural network.
In: ISCA, pp. 243–254. IEEE Computer Society (2016)

7. Aimar, A., et al.: NullHop: a flexible convolutional neural network accelerator based
on sparse representations of feature maps (2017)

8. Andri, R., Cavigelli, L., Rossi, D., Benini, L.: YodaNN: an architecture for ultra-low
power binary-weight CNN acceleration (2016)

9. Rybalkin, V., Wehn, N., Yousefi, M.R., Stricker, D.: Hardware architecture of bidi-
rectional long short-term memory neural network for optical character recognition.
In: Proceedings of the Conference on Design, Automation and Test in Europe, pp.
1394–1399. European Design and Automation Association (2017)

10. Chang, A.X.M., Zaidy, A., Gokhale, V., Culurciello, E.: Compiling deep learning
models for custom hardware accelerators (2017)

11. You, Y., Gitman, I., Ginsburg, B.: Large batch training of convolutional networks
(2017)

12. Keuper, J., Pfreundt, F.J.: Distributed training of deep neural networks: theoretical
and practical limits of parallel scalability (2016)

13. Kuehn, M., Keuper, J., Pfreundt, F.J.: Using GPI-2 for distributed memory par-
alleliziation of the Caffe toolbox to speed up deep neural network training (2017)

14. Renggli, C., Alistarh, D., Hoefler, T.: SparCML: high-performance sparse commu-
nication for machine learning (2018)

15. Aji, A.F., Heafield, K.: Sparse communication for distributed gradient descent
(2017)

16. Wangni, J., Wang, J., Liu, J., Zhang, T.: Gradient sparsification for
communication-efficient distributed optimization (2017)

17. Rhu, M., O’Connor, M., Chatterjee, N., Pool, J., Kwon, Y., Keckler, S.W.: Com-
pressing DMA engine: leveraging activation sparsity for training deep neural net-
works. In: 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 78–91. IEEE (2018)

18. Lin, Y., Han, S., Mao, H., Wang, Y., Dally, W.J.: Deep gradient compression:
reducing the communication bandwidth for distributed training (2017)

19. Loroch, D.M., Pfreundt, F.J., Wehn, N., Keuper, J.: TensorQuant: a simulation
toolbox for deep neural network quantization. In: MLHPC@SC, pp. 1:1–1:8. ACM
(2017)

20. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. OSDI 16,
265–283 (2016)

21. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine
learning. SIAM Rev. 60(2), 223–311 (2016)

22. Sun, X., Ren, X., Ma, S., Wang, H.: meProp: sparsified back propagation for accel-
erated deep learning with reduced overfitting. CoRR, abs/1706.06197 (2017)

23. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition
(2015)

20 D. M. Loroch et al.

25. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-
scale hierarchical image database. In: IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)

26. Krizhevsky, A.: Learning multiple layers of features from tiny images, May 2012
27. Krizhevsky, A., Nair, V., Hinton, G.: CIFAR-100 (Canadian institute for advanced

research) (2009)
28. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to

document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
29. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:

Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

30. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. CoRR, abs/1502.03167 (2015)

31. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep
neural networks (2016)

32. Liu, X., Pool, J., Han, S., Dally, W.J.: Efficient sparse-Winograd convolutional
neural networks. CoRR, abs/1802.06367 (2018)

	Sparsity in Deep Neural Networks - An Empirical Investigation with TensorQuant
	1 Introduction
	1.1 Related Work
	1.2 Contribution

	2 Methods
	2.1 Sparsity
	2.2 Enforcing Sparsity
	2.3 TensorQuant

	3 Experiments
	3.1 Sparsity of Activations and Weights
	3.2 Sparsity of Gradients During Training

	4 Conclusion
	References

