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Abstract. In (Brunetti et al.: Extension of a one-dimensional convexity
measure to two dimensions, LNCS 10256 (2017) 105–116) a spatial con-
vexity descriptor is designed which provides a quantitative representation
of an object by means of relative positions of its points. The descriptor
uses so-called Quadrant-convexity and therefore, it is an immediate two-
dimensional convexity descriptor. In this paper we extend the definition
to spatial relations between objects and consider complex spatial rela-
tions like enlacement and interlacement. This approach permits to easily
model these kinds of configurations as highlighted by the examples, and
it allows us to define two interlacement descriptors which differ in the
normalization. Experiments show a good behavior of them in the studied
cases, and compare their performances.
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1 Introduction

Shape representation is a current topic in digital image analysis, for example,
for object recognition and classification issues. Suitable approaches for handling
the problems consist in the design of new shape descriptors and measures for
descriptors sensitive to distinguish the shapes but robust to noise. Some methods
provide a unified approach that can be applied to determine a variety of shape
measures, but more often they are specific to a single aspect of shape.

Over the years, measures for descriptors based on convexity have been devel-
oped. Area based measures form one popular category [6,23,25], while boundary-
based ones [28] are also frequently used. Other methods use simplification of the
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contour [18] or a probabilistic approach [21,22] to solve the problem. Recently,
measures based on directional (line) convexity have been defined and investi-
gated, independently, in [3,26] and in [16,17], to use the degree of directional
convexity as a shape prior in image segmentation. These methods cannot be
extended easily to a two-dimensional convexity measure. A different approach
to this aim is to employ the concept of so-called Quadrant-convexity [8,9] which
is inherently two-dimensional. In this way, an extension of the directional con-
vexity in [3] which uses quantitative information was introduced in [7], whereas
in [1,2] a different 2D convexity measure based on salient points [12,13] was
presented.

In this paper, we study more deeply the measure we derived the shape
descriptors from, in [7]. The concepts on the basis of the measure definition
have a counterpart in the framework of fuzzy sets for spatial relationships since
the measure gives a quantitative representation of the object by means of relative
positions of its points. Thus, the derived descriptors provide a model for study-
ing the spatial relative position concepts in connection with unary relationships
(to a reference object) and binary relationships (between two objects) [19].

Spatial relations have been studied in many disciplines (see Sect. 8 of [19]
for a review of the related literature), and constitute an important part of the
knowledge for image processing and understanding [4]. Two types of questions
are raised when dealing with spatial relations: (1) given one reference object,
define the region of space in which a relation to this reference is satisfied (to
some degree); (2) given two objects (possibly fuzzy), assess the degree to which
a relation is satisfied. Concerning the latter ones, they can be categorized into
directional (relations like “to the left”), distance (relations like “far”), and topo-
logical. In particular, questions related to measuring complex spatial relations
like enlacement, interlacement, and surrounding have been studied in [10,11].
The term enlacement between F and G does indicate that object G is somehow
between object F (the reference). Given a direction, a straight line parallel to the
direction intersects the object in a one-dimensional finite slice (possibly empty),
called longitudinal cut. Roughly speaking, the directional enlacement of G with
regards to F along an oriented line is given by summing up the contributions of
longitudinal cuts to count the number of triplet of points in F × G × F , as G is
enlaced by F if their points alternate in this order [10]. If we consider the unary
relationship, given the reference object F , the directional enlacement landscape
of F along an oriented line consists in quantifying the region of space that is
enlaced by F by longitudinal cuts. It is worth mentioning that objects can be
imbricated each other only when the objects are concave, or constituted by mul-
tiple connected components, and indeed the use of some kind of convexity to
deal with these spatial relationships has been already investigated also in [5].
Here we propose our Quadrant-convexity measure to tackle these issues directly
in the two-dimensional space, i.e., to define a shape descriptor based on spatial
relative positions of points which permits to define enlacement and interlace-
ment between two objects. This approach is evaluated by suitable examples. In
particular, we develop the idea to use our descriptor for enlacement landscape,
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i.e., taking the foreground as one object and the background as the other object.
This permits to deal with the classification problem, and the experiments show
a good performance in the studied cases.

In Sect. 2 we recall some information on Quadrant-convexity. In Sect. 3 we
introduce the enlacement descriptor by normalizing the Quadrant-convexity
measure. Then, in Sect. 4 we define the object enlacement and interlacement
descriptors. Section 5 is for the experiments and Sect. 6 is for the conclusion.

2 Quadrant-Convexity

In the sequel, consider a two-dimensional object F to be represented by a non-
empty lattice set, i.e. a finite subset of Z2, or equivalently, a function f : Z

2 →
{0, 1}. Let R be the smallest rectangle containing F and suppose it is of size
m×n. We illustrate F as a union of white unit squares (foreground pixels), up to
translations, and R \ F as a union of black unit squares (background pixels).

Each position (i, j) in the rectangle together with the horizontal and vertical
directions determines the following four quadrants:

Z0(i, j) = {(l, k) ∈ R : 0 ≤ l ≤ i, 0 ≤ k ≤ j},

Z1(i, j) = {(l, k) ∈ R : i ≤ l ≤ m − 1, 0 ≤ k ≤ j},

Z2(i, j) = {(l, k) ∈ R : i ≤ l ≤ m − 1, j ≤ k ≤ n − 1},

Z3(i, j) = {(l, k) ∈ R : 0 ≤ l ≤ i, j ≤ k ≤ n − 1}.

Let us denote the number of object points (foreground pixels) of F in Zp(i, j)
by np(i, j), for p = 0, . . . , 3, i.e.,

np(i, j) = card(Zp(i, j) ∩ F}) (p = 0, . . . , 3). (1)

Definition 1. A lattice set F is Quadrant-convex (shortly, Q-convex) if for each
(i, j) (n0(i, j) > 0 ∧ n1(i, j) > 0 ∧ n2(i, j) > 0 ∧ n3(i, j) > 0) implies (i, j) ∈ F .

Fig. 1. A Q-convex image (left) and a non Q-convex image (right). The four quadrants
around the point (5, 5) are: Z0(5, 5) left-bottom, Z1(5, 5) right-bottom, Z2(5, 5) right-
top, Z3(5, 5) left-top.

If F is not Q-convex, then there exists a position (i, j) violating the Q-
convexity property, i.e. np(i, j) > 0 for all p = 0, . . . , 3 and (i, j) /∈ F . Figure 1



A Spatial Convexity Descriptor for Object Enlacement 333

illustrates the definition of Q-convexity: the lattice set on the right is Q-concave
(not Q-convex) because (5, 5) /∈ F but Zp(5, 5) contains object points, for all
p = 0, 1, 2, 3. In the figure we have n0(5, 5) = n1(5, 5) = n2(5, 5) = n3(5, 5) = 24.
Let us notice that Definition 1 is based on the relative positions of the object
points: the quantification of the object points in the quadrants with respect to
the considered point gives rise to a quantitative representation of Q-concavity.

We define the Q-concavity measure of F as the sum of the contributions of
non-Q-convexity for each point in R. Formally,

ϕF (i, j) = n0(i, j)n1(i, j)n2(i, j)n3(i, j)(1 − f(i, j)), (2)

where (i, j) is an arbitrary point of R, and f(i, j) = 1 if the point in position
(i, j) belongs to the object, otherwise f(i, j) = 0. Moreover,

ϕF = ϕF (F ) =
∑

(i,j)∈R
ϕF (i, j). (3)

For example, for the image on the right of Fig. 1, we have ϕF (5, 5) = 24 · 24 · 24 ·
24 · 1 = 331776.

Remark 1. If f(i, j) = 1, then ϕF (i, j) = 0. Moreover, if f(i, j) = 0 and there
exists np(i, j) = 0, then ϕF (i, j) = 0. Thus, F is Q-convex if and only if ϕF = 0.

Remark 2. By definition, ϕ is invariant by reflection and by point symmetry.

Remark 3. In [7] the authors showed that the Quadrant-concavity measure ϕ
extends the directional convexity in [3].

Remark 4. Previous definitions can be viewed in a slightly different way to pro-
vide a relationship to a reference object. Since, the latter one is the discrete
version of the directional enlacement landscape of F along one oriented line, the
Q-concavity measure extends fuzzy directional enlacement: The intersections of
F with the four quadrants Z0, Z1, Z2, Z3 are an extension of the concept of lon-
gitudinal cut to two dimensions, and so relation (2) gives a quantification of the
enlacement by the reference object F for the (landscape) point (i, j). Indeed, Q-
convexity evaluates if a landscape point is among points of the reference object
by looking at the presence of points of the reference object in each quadrant
around the landscape point into consideration.

3 Obtaining Enlacement Descriptor by Normalization

In order to measure the degree of Q-concavity, or equivalently the degree of
landscape enlacement for a given object F , we normalize ϕ so that it ranges
in [0, 1] (fuzzy enlacement landscape). We propose two possible normalizations
gained by normalizing each contribution. A global one is obtained following [11]:

E(1)
F (i, j) =

ϕF (i, j)
max(i′,j′)∈R ϕF (i′, j′)

. (4)

Second (local) one is based on [7]. There the authors proved
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Proposition 1. Let f(i, j) = 0, and hF
i and vF

j be the i-th row and j-th column
sums. Then, ϕF (i, j) ≤ ((card(F ) + hF

i + vF
j )/4)4.

As a consequence we may normalize each contribution as

E(2)
F (i, j) =

ϕF (i, j)
((card(F ) + hF

i + vF
j )/4)4

. (5)

In order to obtain a normalization for the global enlacement for both (4) and
(5), we sum up each single contribution and then we divide by the number of
non-zero contributions.

Definition 2. For a given binary image F , its global enlacement landscape E(·)
F

is defined by

E(·)
F =

∑

(i,j)∈F̄

E(·)
F (i, j)

card(F̄ )
,

where F̄ denotes the subset of (landscape) points in R \ F for which the contri-
bution is not null.

Figure 2 illustrates the values of the descriptors for four images. The first
image is Q-convex and thus the descriptor gives 0. The second image receives a
greater value than the third one since the background region inside is deeper. In
the fourth image part of the background is entirely closed into the object, thus
this image receives a high value.

E(1)
F = 0 E(1)

F = 0.38225 E(1)
F = 0.56903 E(1)

F = 0.80363

E(2)
F = 0 E(2)

F = 0.31707 E(2)
F = 0.56773 E(2)

F = 0.65960

Fig. 2. Example images with their enlacement values. In case of the last image a thin
black frame is added just for visibility, it does not belong to the image.

Figure 3 shows the contribution of each pixel according to (4): the gray-scale
levels correspond to the degrees of fuzzy enlacement of each pixel in the land-
scape. We can see that pixels inside the concavities have lighter colors (repre-
senting higher values) than pixels outside. Similar images can be given according
to (5). Of course, in case of the first image of Fig. 2, the enlacement landscape
is a completely black image. We point out that normalization plays a key role
in Definition 2, as we will show in the experiments.
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Fig. 3. Enlacement landscapes of the last three images of Fig. 2.

4 Object Enlacement and Interlacement

In the previous sections we have defined a shape measure ϕF based on the
concept of Q-convexity which provides a quantitative measure for studying rela-
tionships to a reference object. Now, we modify it into a spatial relationship (a
relationship between two objects). Let F and G be two objects. How much is
G enlaced by F? The idea is to capture how many occurrences of points of G
are somehow between points of F . This is obtained in a straightforward way, by
restricting the points in R \ F taken into account to the points in G. Therefore,

ϕFG(i, j) =

{
ϕF (i, j) if (i, j) ∈ G,

0 otherwise.
(6)

Trivially note that if G = R \ F , then ϕFG(i, j) = ϕF (i, j). The enlacement
descriptors of G by F are thus

E(1)
FG(i, j) =

ϕFG(i, j)
max(i,j)∈G ϕFG(i, j)

, (7)

and

E(2)
FG(i, j) =

ϕFG(i, j)
((card(F ) + hF

i + vF
j )/4)4

. (8)

For clarity, we observe that, by definition, ϕFG(i, j) = 0 if (i, j) /∈ F̄ , thus
the maximum of ϕFG(i, j) in G is equal to the maximum in G ∩ F̄ . In order to
obtain a normalization for the global enlacement, it is enough to get.

Definition 3. Let F and G be two objects. The enlacement of G by F is

E(·)
FG =

∑

(i,j)∈G

E(·)
FG(i, j)

card(G ∩ F̄ )
.

Remark 5. Let us notice that the definition of enlacement of two objects can be
extended as follows:

∑
(i,j)∈R min(E(1)

FG(i, j), g(i, j))
∑

(i,j)∈R g(i, j)
,
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E(1)
FG = 0, E(1)

GF = 0.93259, I(1)
FG = 0 E(1)

FG = 0.54401, E(1)
GF = 0.54914, I(1)

FG = 0.54656

E(2)
FG = 0, E(2)

GF = 0.93332, I(2)
FG = 0 E(2)

FG = 0.52357, E(2)
GF = 0.52856, I(2)

FG = 0.52605

Fig. 4. Example images [10] with their interlacement values, where F and G is repre-
sented by white and gray pixels, respectively.

where g is the membership function representing G. If G is a fuzzy set, we may
generalize the formula by substituting g with the membership function, and it
corresponds to a satisfiability measure such as a normalized intersection [27].

Of course, the enlacement of two objects is an asymmetric relation so that the
enlacement of G by F and the enlacement of F by G provide different “views”.
We may combine both by their harmonic mean to give a symmetric relation
which is a description of mutual enlacement.

Definition 4. Let F and G be two objects. The interlacement of F and G is

I(·)
FG =

2E(·)
FGE(·)

GF

E(·)
FG + E(·)

GF

, (9)

where E(·)
FG and E(·)

GF are the enlacement of G by F and the enlacement of F by
G, respectively.

Figure 4 shows two example images with their interlacement values.
The measures can be efficiently implemented in linear time in the size of

the image. By definition, Z0(l, k) ⊆ Z0(i, j) if l ≤ i and k ≤ j, and hence
n0(l, k) ≤ n0(i, j) with l ≤ i and k ≤ j. Analogous relations hold for Z1, Z2, Z3

and for n1, n2, n3 accordingly. Exploiting this property, and proceeding line by
line, we can count the number of points in F for Zp(i, j), for each (i, j) in linear
time, and store them in a matrix for any p = {1, 2, 3, 4}. Then, ϕ(i, j) can be
computed in constant time for any (i, j). Normalization is straightforward.

5 Experiments

We first conducted an experiment to investigate scale invariance on a variety of
different shapes (Fig. 5) from [22]. After digitalizing the original 14 images on
different scales (32 × 32, 64 × 64, 128 × 128, 256 × 256, 512 × 512) we computed
the two different interlacement values for each and compared them (being F the
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foreground and G the background). Table 1 shows the average of the measured
interlacement differences over the 14 pairs of consecutive images. From the small
values we can deduce that scaling has no significant impact on these measures,
from the practical point of view. Obviously, in lower resolutions the smaller parts
of the shapes may disappear, therefore the differences can be higher.

Fig. 5. Variety of different shapes

Table 1. Average difference of interlacement values between consecutive image pairs

Size E(1) E(2)

32 → 64 0.0513 0.0163

64 → 128 0.0164 0.0077

128 → 256 0.0069 0.0027

256 → 512 0.0027 0.0017

In the second and third experiments we used public datasets of fundus
photographs of the retina for classification issues. We decided to compare our
descriptor with its counterpart in [10] since they model a similar idea based on
a quantitative concept of convexity. The main difference is that we provide a
fully 2D approach, whereas the directional enlacement landscape in [10] is one-
dimensional. The CHASEDB1 [15] dataset is composed of 20 binary images with
centered optic disks, while the DRIVE [24] dataset contains 20 images where the
optic disk is shifted from the center (Fig. 6).

Following the strategy of [10] we gradually added different types of random
noise to the images of size 1000× 1000 (which can be interpreted as increasingly
strong segmentation errors). Gaussian and Speckle noise were added with 10
increasing variances σ2 ∈ [0, 2], while salt & pepper noise was added with 10
increasing amounts in [0, 0.1]. Some example images are shown in Fig. 7. Then,
we tried to classify the images into two classes (CHASEDB1 and DRIVE) based
on their interlacement values (being F the object and G the background, again),
by the 5 nearest neighbor classifier with inverse Euclidean distance (5NN). For
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Fig. 6. Examples of the CHASEDB1 (left) and DRIVE datasets (right)

the implementation we chose the WEKA Toolbox [14] and we used leave-one-
out cross validation to evaluate accuracy. The results are presented in Table 2.
In [10] the authors reported to reach an average accuracy of 97.75%, 99.25%,
and 98.75% for Speckle, Gaussian, and salt & pepper noise, respectively, on
the same dataset with 5NN. In comparison, I(1)

FG shows a worse performance.
Fortunately, the way of normalization in (5) solves the problem, thus the results
using I(2)

FG are just slightly worse in case of Speckle and salt & pepper noise.
This is especially promising, since our descriptor uses just two directions (four
quadrants) being two-dimensional based whereas that of [10] uses 180 directions
being one-dimensional based, and thus, it takes also more time to compute.
Nevertheless, even a moderate amount of Gaussian noise distorts drastically the
structures (see, again, Fig. 7), thus two-directional enlacement can no longer
ensure a trustable classification.

Fig. 7. Retina images with moderate (top row) and high (bottom row) amount of noise.
Speckle, salt & pepper, and Gaussian noise, from left to right, respectively.

Finally, for a more complex classification problem, we used the High-Resolu-
tion Fundus (HRF) dataset [20], which is composed of 45 images of fundus: 15
healthy, 15 with glaucoma symptoms and 15 with diabetic retinopathy symp-
toms (Fig. 8). Using the same classifier as before we tried to separate the 15
healthy images from the 30 diseased cases. Figure 9 shows the precision-recall
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Table 2. 5NN classification accuracy (in percentage) of CHASEDB1 and DRIVE
images for different types and levels of noise.

Speckle Salt & pepper Gaussian

I(1)
FG I(2)

FG I(1)
FG I(2)

FG I(1)
FG I(2)

FG

Level 1 60.0 95.0 87.5 92.5 65.0 95.0

Level 2 85.0 95.0 85.0 95.0 72.5 87.5

Level 3 60.0 95.0 85.0 95.0 95.0 80.0

Level 4 67.5 95.0 87.5 95.0 82.5 67.5

Level 5 82.5 95.0 85.0 95.0 67.5 47.5

Level 6 70.0 95.0 87.5 95.0 67.5 52.5

Level 7 47.5 95.0 85.0 92.5 52.5 50.0

Level 8 57.5 95.0 85.0 90.0 72.5 57.5

Level 9 55.0 95.0 85.0 90.0 32.5 55.0

Level 10 67.5 95.0 87.5 90.0 57.5 55.0

Fig. 8. Examples of the HRF dataset (healthy case, glaucoma, diabetic retinopathy,
from left to right, respectively)

Fig. 9. Precision-recall curves obtained for classifying healthy and diseased cases of
the HRF images. Green: I(1)

FG Blue: I(2)
FG Red: curve of [10] (Color figure online)

curves obtained for this classification problem by the two different interlacement
descriptors. For comparison we present also the curve based on the interlacement
descriptor introduced in [10]. The performance of I(1)

FG seems to be worse, again,
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in this issue. On the other hand, we observe that descriptor I(2)
FG performs as

well as the one presented in [10] (or even slightly better). We stress again that
our descriptor uses just two directions.

6 Conclusion

In this paper, we extended the Q-convexity measure of [7] to describe spatial
relations between objects and consider complex spatial relations like enlacement
and interlacement. We proposed two possible normalizations to obtain enlace-
ment measures. The idea of the first one comes from [11], while the second one
is based on our former work in [7]. As testified by the experiments, normaliza-
tion plays a crucial role: the local normalization E2 performed generally better
than the global normalization E1 in all the studied cases. In the experiments
for classification issues, we developed the idea to assume the foreground being
one object and the background being the other. This method is similar to the
one in [10] so that the two methods aim at modelling the same idea. However,
our method is based on a fully two-dimensional approach whereas the other
is based on the one-dimensional directional enlacement. We believe that the
two-dimensional approach is more powerful, and indeed in the experiments, just
using two directions (so four quadrants), we reached comparable and even better
results than that obtained by [10] employing many directions. This is the price
to pay for the one-dimensional approach. Nevertheless, starting from the defini-
tion of Q-convexity, a further developement could consist in the employment of
more directions. Another point is that the descriptors are not rotation invariant
for rotations different from 90◦. A possibility is to preprocess the image by com-
puting the principal axes and rotate the image before computing enlacement so
that the principal axes will be aligned in the horizontal and vertical directions.
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