
Minimal Component-Hypertrees

Alexandre Morimitsu1(B), Wonder Alexandre Luz Alves2, Dennis Jose Silva1,
Charles Ferreira Gobber2, and Ronaldo Fumio Hashimoto1(B)

1 Department of Computer Science, Institute of Mathematics and Statistics,
Universidade de São Paulo, São Paulo, Brazil

{alexandre.morimitsu,ronaldo}@usp.br
2 Informatics and Knowledge Management Graduate Program,

Universidade Nove de Julho, São Paulo, Brazil

Abstract. Component trees are interesting structures of nested con-
nected components, efficiently represented by max-trees, used to imple-
ment fast algorithms in Image Processing. In these structures, connected
components are constructed using a single neighborhood. In recent years,
an extension of component trees, called component-hypertrees, was intro-
duced. It consists of a sequence of component trees, generated from a
sequence of increasing neighborhoods, in which their connected compo-
nents are also hierarchically organized. Although this structure could be
useful in applications dealing with clusters of objects, not much atten-
tion has been given to component-hypertrees. A naive implementation
can be costly both in terms of time and memory. So, in this paper, we
present algorithms and data structures to efficiently compute and store
these structures without redundancy obtaining a minimal representation
of component-hypertrees. Experimental results using our efficient algo-
rithm show that the number of nodes is reduced by approximately 70%
in comparison to a naive implementation.

Keywords: Mathematical Morphology · Component-hypertree ·
Component tree · Connected component · Connected operators

1 Introduction

In recent years, component trees have received increasing attention in Image
Processing, particularly in Mathematical Morphology, since they can be used
for many tasks such as image filtering [9] and shape recognition [11]. A compo-
nent tree represents a gray-level image by storing connected components of its
level sets for a given connectivity and relating them by the inclusion relation.
Although multiple types of connectivity can be used, like 4 and 8-connectivity,
mask-based [6] and hyper-connectivity [7], only a single tree can be extracted,
and thereby limiting the number of problems that can be solved by this approach.

Recently, Passat and Naegel [8] proposed a structure which represents a
gray-level image by a set of component trees built with increasing neighbor-
hoods called component-hypertree. Due to increaseness of the neighborhoods,
c© Springer Nature Switzerland AG 2019
M. Couprie et al. (Eds.): DGCI 2019, LNCS 11414, pp. 276–287, 2019.
https://doi.org/10.1007/978-3-030-14085-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14085-4_22&domain=pdf
https://doi.org/10.1007/978-3-030-14085-4_22


Minimal Component-Hypertrees 277

component-hypertrees relate connected components of different neighborhoods
according to their inclusion. For example, in text extraction problem, a word
and its letters are nodes of a component-hypertree and they are related by the
inclusion relation.

In the original paper [8], Passat and Naegel provided a theoretical background
for mask-based connectivities. Although the structure is explained, no explicit
optimized algorithm for component-hypertrees construction is provided. Also,
some theoretical explanations are given about how to perform simplification in
the graph, but many repeated nodes still remain. In [3], algorithms are provided
for a specific type of dilation-based connectivities. That work showed an efficient
way of computing hypertrees for multiple neighborhoods but it did not focus on
the problem of storing hypertrees efficiently.

Using an approach that stores the CCs of all component trees of all neigh-
borhoods, the component-hypertree would have a prohibitive memory usage.
However, most of the CCs in different trees are repeated, meaning a consider-
able amount of memory can be saved by smartly allocating only relevant nodes
and arcs of the hypertree. So in this paper, we present the minimal component-
hypertree: a data structure which efficiently stores the component-hypertree by
keeping only the minimum number of nodes and arcs needed to efficiently recover
all CCs. In this structure, repeated CCs obtained from different level sets and
neighborhoods are discarded, meaning that each CC is stored only once.

For that, we adopt the following strategy: before explaining our data struc-
ture and algorithms, we first recall the theory behind component trees and
component-hypertrees in Sect. 2. We present our main contributions in Sect. 3
where we show the theory and the algorithms used to build minimal component-
hypertrees. In Sect. 4, we show some experiments that quantify the obtained
memory saving using our strategy. Finally, we conclude our paper in Sect. 5.

2 Background

2.1 Images and Connectivity

In this study, we consider an image f as a mapping from a subset of a rectangular
grid D ⊂ Z

2 to a set of gray-levels K = {0, 1, . . . ,K − 1}. An element p ∈ D
is called pixel and the gray-level associated with p in image f is denoted by
f(p). In addition, a pixel p ∈ D can be a neighbor of others pixels of D in
their surroundings. This notion of neighborhood can be defined by a structuring
element (SE), that is, a subset S ⊂ Z

2. Thus, given a set of pixels P ⊆ D and a
SE S, we define P ⊕ S, the dilation of P by S as P ⊕ S = {p + s : p ∈ P, s ∈
S and (p+s) ∈ D}. In this sense, we say that two pixels p and q are S-neighbors
if q ∈ ({p} ⊕ S). In this paper, we only take into consideration symmetric SEs
(i.e., if s ∈ S, so does −s), so q ∈ ({p} ⊕ S) is equivalent to p ∈ ({q} ⊕ S).
Given a SE S, we define the set of neighboring pixels defined by S, or simply
neighborhood, as A(S) = {(p, q) : p ∈ {q} ⊕ S, p ∈ D, q ∈ D}. If the SE S is not
relevant, we may simply denote a neighborhood by A. In addition, considering
a set X ⊂ D and a set of neighborhood A, we say that two pixels p, q ∈ X are



278 A. Morimitsu et al.

A-connected if and only if there exists a sequence of pixels (p1, p2, . . . , pm), with
pj ∈ X, such that all the following conditions hold: (a) p1 = p; (b) pm = q;
(c) {pj , pj+1} ∈ A for all 1 ≤ j < m. Connectedness can be used to define A-
connected components (A-CCs) or simply connected components (CCs). In this
way, A-CCs are defined as maximal sets of A-connected pixels in X.

2.2 Component Trees

From an image f we define, for any λ ∈ K, the set Xλ(f) = {p ∈ D :
f(p) ≥ λ} as the upper level set at value λ of the image f . Level sets are
nested, i.e., X0(f) ⊇ X1(f) ⊇ . . . ⊇ XK−1(f). By defining CC(f,A) =
{(C, λ) : C is a A-CC of Xλ(f), λ ∈ K} , we can denote an order relation between
these elements: given two elements (C, α), (C′, β) ∈ CC(f,A), we define that
(C, α) � (C′, β) ⇔ C ⊆ C′ and α > β. This means these elements can be orga-
nized hierarchically in a tree structure according to this order relation. This tree
is commonly referred as component tree. It is easy to note that, in a component
tree, a single CC C can be represented by multiple nodes, if C exists in multiple
level sets. In order to simplify the structure and save memory, an option is to
store only one node per CC. It is easy to show that, in order to recover the com-
plete tree, storing only the highest gray-level that generates each CC suffices.
Using this property, we can create a simplified component tree without repeated
CCs. This simplified structure is usually called max-tree. An example is shown
in Fig. 1.

2.3 Algorithmic Background

There are many efficient ways of building max-trees [1]. One of the most efficient
strategies consists in a generalization of the classic CC-labeling algorithm based
on disjoint set structure (union-find) [4,12]. In this generalized structure, each
CC has a representative pixel, and links between representative pixels give infor-
mation about the inclusion relation of the CCs. In this way, each CC is composed
of a representative and all other elements that point towards it. Disjoint sets can
be efficiently stored using an array, which is called parent, so that parent[p] refers
to the element that p is pointing to. Algorithm1 shows the union-find algorithm.

Algorithm 1. Max-tree building based on disjoint sets.
1: procedure unionFind(f , A, parent)
2: for {p, q} ∈ A do
3: rP ← find(parent, f , p);
4: rQ ← find(parent, f , q);
5: union(parent, rP , rQ);

6: return parent;

1: procedure makeset(parent, f)
2: for p ∈ D do
3: parent[p] ← ∅;

1: procedure find(parent, f , p)
2: if p = ∅ then
3: return p;

4: if f(p) �= f(parent[p]) then
5: return p;
6: else
7: parent[p] ←
8: find(parent, f , parent[p]);
9: return parent[p];



Minimal Component-Hypertrees 279

In this algorithm, there are three basic operations: (1) makeset, which ini-
tializes the array with each pixel as a disjoint CC; (2) find, which obtains the
representative of a given pixel p; and (3) union, which given two representatives
p and q, makes the adjustments to merge CCs containing p to CCs containing q.
The basic idea of the algorithm to build max-trees using disjoint sets is simply
to connect all neighboring pixels by calling the union function when they do
not belong to the same CC. Figure 1 shows a graphical example of union-find
(rightmost column).

Fig. 1. From left to right: a gray-level image f ; the upper level sets of f ; the respective
component tree with each CC as a node and arcs indicating the order relation; a
graphical representation of the parent array that represents the max-tree. Each element
p is represented by a circle and parent[p] is given by the arc leaving from p.

2.4 Component-Hypertrees

An extension of component trees can be obtained by considering another way of
organizing the CCs of upper level sets in a hierarchical way using multiple neigh-
borhoods. Let A be a sequence of neighborhood sets, i.e., A = (A1,A2, . . . ,An).
If these neighborhoods are increasing (i.e., Ai ⊂ Ai+1 with 1 ≤ i < n), then
for any Ai-CC C, there exists an Ai+1-CC C′ that contains C, that is, C ⊆ C′.
An easy way of obtaining increasing neighborhoods is to consider a sequence
of SEs S = (S1, . . . ,Sn) such that Si ⊂ Si+1, 1 ≤ i < n (an example is pro-
vided in Fig. 2). Then, if we define Ai = A(Si) and A = (A1, . . . ,An), A will be
a sequence of increasing neighborhoods. By combining the CCs of upper level
sets and increasing neighborhoods, we can build a hierarchical graph known as
component-hypertree. More formally, given an image f and a sequence of increas-
ing neighborhoods A, we define the set of A-CCs, denoted by N(f,A), as

N(f,A) = {(C, λ, i) : C ∈ CC(f,Ai), λ ∈ K, i ∈ I}, (1)



280 A. Morimitsu et al.

where I = {1, 2, . . . , n}. Considering this set, two distinct elements (C, α, i) and
(C′, β, j) of N(f,A) are said to be nested if and only if C ⊆ C′, α ≥ β and i ≤
j with (C, α, i) 
= (C′, β, j). In this case, we write (C, α, i) � (C′, β, j). Given two
elements N ,N ′ ∈ N(f,A) such that N � N ′, if there is no N ′′ ∈ N(f,A)
satisfying N � N ′′ � N ′, then we write N ≺ N ′.

The hypertree of an image f using a sequence of neighborhoods A, denoted
by HT (f,A), is simply the directed graph (V (f,A), E(f,A)) where its vertices
V (f,A) are the A-CCs, i.e., V (f,A) = {v ∈ N(f,A)} and its arcs E(f,A) is
defined as E(f,A) = {(N ,N ′) ∈ N(f,A) × N(f,A) : N ≺ N ′}.

Each arc e = (N ,N ′) is named by either parent arc or composite arc. On one
hand, if e is such that N and N ′ are nodes representing CCs from consecutive
level sets but with the same neighborhood, we say that e is a parent arc; in
addition, we also say that N is a child node of N ′, or N ′ is a parent node of
N . On the other hand, if N and N ′ have the same gray-level but consecutive
neighborhood indices, we say that e is a composite arc; in addition, we also
say that N ′ is a composite node of N , or N being a partial node of N ′. An
example is provided at the left side of Fig. 3, where parent and composite arcs
are respectively represented by black and blue colors.

Fig. 2. A sequence S = (S1, S2, S3) with 3 increasing SEs.

3 Minimal Component-Hypertree

As explained, component trees can be efficiently stored using max-trees. Sim-
ilarly, we want to define a minimal structure for storing hypertrees. For that,
it suffices to keep in memory the CCs along with their highest threshold and
their lowest adjacency index. Thus, we define the compact node of a node
N = (C, λ, i), denoted by cn((C, λ, i)), of a hypertree HT (f,A) as

cn((C, λ, i)) = (C′, β, �) ∈ N(f,A) such that C′ = C and
∀(C′′, α, j) ∈ N(f,A) with C′′ = C, β ≥ α and � ≤ j.

(2)

In the same way, given an arc (N ,N ′) ∈ E(f,A), we define its compact arc as

ca((N ,N ′)) = (cn(N ), cn(N ′)). (3)

So, from the above definitions, we can derive the compact representation of a
hypertree HT (f,A) as the directed graph (CN(f,A), CE(f,A)) where

CN(f,A) = {cn(N ) : N ∈ N(f,A)} and
CE(f,A) = {ca((N ,N ′)) : (N ,N ′) ∈ E(f,A)} (4)

are, respectively, the sets of compact nodes and compact arcs. Figure 3 shows an
example of a hypertree (left) and its compact representation (right).



Minimal Component-Hypertrees 281

Fig. 3. Left: the complete hypertree of f from Fig. 1 using A = (A(S1), A(S2), A(S3)),
where Si, i = {1, 2, 3} is in Fig. 2. Each shape represents a node, and the colored squares
represent their respective CCs. Parent arcs are colored black, while composite arcs are
blue. Compact nodes are drawn with thick border. Right: the simplified hypertree with
only compact arcs and compact nodes. (Color figure online)

From the compact representation, we still can eliminate some redundant
arcs (see an example in Fig. 4). We say that a compact arc e = (N ,N ′) ∈
CE(f,A) is a redundant arc if and only if there exists a directed path π = (N =
N1,N2, . . . ,Nm = N ′) in the compact hypertree such that

1. N1 = N = (C, α, i1);
2. Nm = N ′ = (C′, β, im);
3. For any k, with 1 ≤ k < m, Nk = (Ck, γk, ik), ik ≤ ik+1.

We say that these arcs are redundant because, in terms of inclusion relation
of CCs, they give the same information of the alternative path π. In addition,
the above Condition (3) enforces that any path does not go “backward”, i.e., we
cannot have a path π that goes from a node with bigger neighborhood to a node
with smaller neighborhood.

If a compact arc is not redundant, it is called a minimal arc. Let MA(f,A)
be the set of all minimal arcs of a compact hypertree built from an image f and
using all neighborhoods in A. Then, we call the minimal component-hypertree
of f using A, the directed graph (CN(f,A),MA(f,A)). Since all arcs that are
not present in the minimal hypertree are redundant, we can easily see that
this minimal representation preserves all the inclusion relation of CCs of the
hypertree. An example of a minimal component-hypertree is shown in Fig. 4.

3.1 Data Structure

Since a hypertree is a DAG (which could be neither a tree nor a forest), only
an array is not enough to store it. In this way, we explicitly allocate nodes and
arcs in order to keep hypertrees in memory. Besides that, since nodes from trees
with indices higher than 1 are composed of cluster of nodes from the first tree,



282 A. Morimitsu et al.

Fig. 4. Left: two examples of redundant arcs in the compact hypertree. For each color
(red, green), the dotted arcs are redundant since they are equivalent to the paths with
the same color. Right: the minimal component-hypertree i.e., the compact hypertree
shown in the left without redundant arcs. Number inside nodes indicate the pixels
stored in each node. (Color figure online)

only pixels of the first tree need to be stored. This strategy saves a considerable
amount of memory, since each pixel is stored only once in the entire hypertree.

In terms of the data stored in each allocated node N of a hypertree, we keep
the following information: (a) rep(N ) is its representative pixel; (b) level(N )
is the (highest) gray-level that generates its CC; (c) index(N ) is the (smallest)
neighborhood index that generates its CC; (d) pixels(N ) is the set of pixels
used to reconstruct its CC; (e) par(N ) is its set of parent nodes; (f) child(N )
is its set of children nodes; (g) comp(N ) is its set of composite nodes and (h)
part(N ) is its set of partial nodes. An allocated node will be initialized as a
triple N = (rep(N ), level(N ), index(N )), with other fields empty.

3.2 Algorithm Template

The naive way of building hypertrees is to compute each max-tree from A1 to
An by allocating its nodes without checking for repetition and then linking the
corresponding nodes between two consecutive trees. In terms of memory usage,
this is not efficient even if the repeated nodes are removed later, since it is needed
to first allocate the whole hypertree in memory (which is a procedure that we
want to keep away).

To avoid this problem, we build up the minimal hypertree by using a variant
of the unordered version of the union procedure. The original algorithm was
first presented in [13]. It has the property that it only changes a parent relation
of a node if it really needs, i.e., a new neighborhood makes two originally disjoint
CCs become connected. By keeping track of these changes, we can predict when
new nodes need to be allocated. So our minimal hypertree construction strategy
will follow the template of Algorithm2.

In this sense, our template can be divided into two phases: one that updates
the parent array (at Line 10) and other that updates the graph itself (at Lines



Minimal Component-Hypertrees 283

Algorithm 2. Minimal hypertree construction template. Underlined parameters
are modified during the function call.
1: procedure buildHypertree(f , A = (A1, . . . , An))
2: nodes ← ∅;
3: for p ∈ D do
4: parent[p] ← ∅;
5: compactNode[p] ← ∅;

6: for 1 ≤ i ≤ n do
7: updateNode ← ∅;
8: updateArc ← ∅;
9: for (p, q) ∈ Ai do

10: union(parent, f , p, q, i, False, updateNode, updateArc);

11: allocateNodes(nodes, compactNode, updateNode, parent, f , i);
12: updateNewArcs(compactNode, updateArc, parent);

11 and 12). After Line 10, we have the parent array representing the max-tree of
f using Ai, and it is used to allocate new nodes and update inclusion arcs.

The time complexity of this algorithm highly depends on the number of neigh-
bors in each step i (at Line 9). We do not focus on the choice of the sequence of
neighborhoods in this paper, but the usage of richer connectivities, such as mask-
based connectivities [6,8,13] and dilation-based connectivities [3,10], can con-
siderably reduce the number of neighbors we have to process, especially because
all elements of Ai−1 also belong to Ai.

3.3 Detection of New Nodes Needed to Be Allocated

A key property needed for efficient node allocation is to quickly detect the emer-
gence of new nodes in the parent array for the next component tree. For that,
we need to change the union (called at Line 10) to detect these new nodes.

Given a pair of neighboring pixels (p, q), the union procedure makes the
necessary changes so that the parent array reflects the next updated component
tree with p and q as neighbors. In a nutshell, these changes consist of merging all
disjoint CCs containing either p or q. This means that these changes are limited
to the branches linking p to r and q to r, where r is the first common ancestor
of p and q in the parent array.

In particular, the CCs represented in the branch from p to r are all CCs
containing p that do not contain q and, likewise, the CCs from q to r do not
contain p. So, the changes we need to do in the union procedure is to mark
elements of the array when a change in the parent array occurs. Let πp = (p =
p1, p2, . . . , pj = r) and πq = (q = q1, q2, . . . , qk = r) be the paths in the parent
array, respectively, from p to r and from q to r. If a pixel q′ of πq becomes the
new parent of p′ from πp (since they become connected in the adjacency Ai),
then we have a change in the parent array so that p′ has its parent changed to
q′ and all elements from q′ to r will have at least a new pixel p′ included, and
will produce new CCs. Analogously, the same property holds if a pixel from πp



284 A. Morimitsu et al.

becomes a parent of an element of πq. Once a change happens, we mark all arcs
and nodes until reaching the common ancestor. These marks are used later to
allocate nodes and update the inclusion relation of new nodes (Lines 11 and 12).

An example is provided in Fig. 5. In the left, the original state of the union-
find representation is shown. Suppose p8 and p16 become neighbors (pj refers to
the pixel in the figure with label j). Notice that p15 is their first common ancestor
and all changes are limited to the branches from p8 to p15 and p16 to p15. When
parent of p8 is updated to p16, all elements from p16 up to p15 now have the
new pixel p8. Likewise, parent of pixel p11 is now pixel p2, and this triggers the
creation of a new node. This change makes p11 not be a representative anymore.

Fig. 5. Left: representation of the parent array from Fig. 1, with representatives high-
lighted. Right: updating the array when pixels p8 and p16 are neighbors. In Algorithm 3,
the red arcs will be added in the set updateArc and nodes p16, p11 and p2 will be added
to the set updateNode, since they all have a new descendant (p8). Node p15 is not added
because it is the first common ancestor of p8 and p16.

In this way, we obtain a version of union procedure that detects when new
nodes need to be created by marking changes in the parent array (see Algo-
rithm3), where marked elements are added to the set updateNode. Likewise, to
create new arcs, whenever a node is created, the path leading that node to the
common ancestor is added to the set updateArc.

3.4 Graph Update: Node Allocation and Arc Addition

Node allocation procedure is shown in Algorithm4. For each marked pixel (i.e.,
the one that is in updateNode) which is representative, we allocate a node. We
still need to deal with some arcs from different component trees, since it is pos-
sible to have arcs linking nodes with same representative. If the newly allocated
node has one partial node (the node from the previous tree with the same repre-
sentative), then we add an arc linking them. In addition, we update compactNode
to always point to the lastly allocated node for each representative (i.e. the last
and smallest compact node that contains the representative). Arc addition is



Minimal Component-Hypertrees 285

Algorithm 3. Modified union-find to mark changes in the parent array.
1: procedure union(parent, f , p, q, i, changed, updateNode, updateArc)
2: if f(p) < f(q) then � we consider f(∅) = −1
3: union(parent, f , q, p, i, changed, updateNode, updateArc);
4: else
5: if p �= q then
6: parP ← find(parent, f , parent[p]);
7: if changed and i > 1 then
8: updateNode ← updateNode ∪ {p}; updateArc ← updateArc ∪ {p};

9: if parP �= q then
10: if f(parP ) ≥ f(q) then
11: union(parent, f , parP , q, i, changed, updateNode, updateArc);
12: else
13: parent[p] ← q;
14: if i > 1 then
15: updateArc ← updateArc ∪ {p};

16: union(parent, f , q, parP , i, True, updateNode, updateArc);

straightforward: for all marked arcs (the ones in updateArc), we add them (link-
ing compact nodes) in the graph (see Algorithm5). In both Algorithms 4 and 5,
arc addition depends on the gray-levels and neighborhood indices of their nodes.
If they have different gray-levels (resp., indices), a parent (resp., composite) arc
is added. Note that these two conditions are not exclusive: it is possible to add
both arcs, like the ones from the green node (with pixel p17) to the gray node
in Fig. 4 (right).

Algorithm 4. Allocation of new nodes from the set updateNode.
1: procedure allocateNodes(nodes, compactNode, updateNode, parent, f , i)
2: for p ∈ updateNode do
3: rP ← find(parent, f , p);
4: if p = rP then
5: Allocate node N ′ ← (rP, f(rP ), i);
6: if compactNode[rP] �= ∅ then
7: N ← compactNode[rP];
8: Add arc (N, N ′);

9: compactNode[rP] ← N ′;
10: nodes ← nodes ∪ {N ′};

Algorithm 5. Updating arcs involving new nodes.
1: procedure updateNewArcs(compactNode, updateArc, parent);
2: for p ∈ updateArc do
3: Add arc (compactNode[p], compactNode[parent[p]]);



286 A. Morimitsu et al.

4 Experiments

In this section, we analyze how much memory is saved by using our minimal
representation of component-hypertrees, compared to the complete representa-
tion and the naive strategy explained in Sect. 3.2. On one hand, in the complete
representation, all CCs for all component trees from A1 to An are stored in
memory. On the other hand, in the naive representation, max-trees (the com-
pact representation for component trees) are used.

For our tests, we used images from ICDAR 2011 [2]. For each image of this
set, we used a sequence of square neighborhoods A = (A1, . . . ,An), with n = 50,
where Ai is defined using a SE of size (2i + 1) × (2i + 1). Then, we computed
the average of the number of nodes and arcs for each i for the 3 structures: the
complete hypertree, the naive implementation and our minimal representation.
The results in Fig. 6 shows that the minimal representation can save a consid-
erable amount of memory compared to the other ones. For example, in average,
for 10 neighborhoods, we have a saving of about 50% compared to the naive
implementation and 80% compared to the complete hypertree, both in terms of
number of nodes and number of arcs.

Fig. 6. Left: average number of nodes for each representation for up to 50 neighbor-
hoods. Right: the same experiments but for the average number of arcs.

For more complex images from ICDAR 2017 [5], our method still saves
between 50% and 80% of memory when compared to the naive approach and
about 60% to 85% when compared to the complete representation (considering
n = 50). In terms of time consumption, using the optimized approach given
in [3] to update the array and our approach for node allocation resulted in total
time ranging from 1 s (for images with 0.25 mega-pixels) to about a minute (for
images with 8 mega-pixels).

5 Conclusion

In this paper, we presented algorithms and data structures behind the con-
struction of minimal component-hypertrees that efficiently store them without
redundancy and without loss of information about the inclusion relation of CCs.



Minimal Component-Hypertrees 287

Experiments show that our approach saves a considerable amount of memory
compared to the complete representation and the strategy of independently
building the max-trees for each neighborhood. As a future work, we plan to
study how to efficiently compute attributes in these structures.

Acknowledgements. This study was financed in part by the CAPES - Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior (Finance Code 001); FAPESP -
Fundação de Amparo a Pesquisa do Estado de São Paulo (Proc. 2018/15652-7); CNPq -
Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico (Proc. 428720/2018-8).

References

1. Carlinet, E., Géraud, T.: A comparative review of component tree computation
algorithms. IEEE Trans. Image Process. 23(9), 3885–3895 (2014)

2. Karatzas, D., Mestre, S.R., Mas, J., Nourbakhsh, F., Roy, P.P.: ICDAR 2011 robust
reading competition-challenge 1: reading text in born-digital images (web and
email). In: 2011 International Conference on Document Analysis and Recognition
(ICDAR), pp. 1485–1490. IEEE (2011)

3. Morimitsu, A., Alves, W.A.L., Hashimoto, R.F.: Incremental and efficient compu-
tation of families of component trees. In: Benediktsson, J.A., Chanussot, J., Naj-
man, L., Talbot, H. (eds.) ISMM 2015. LNCS, vol. 9082, pp. 681–692. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-18720-4 57

4. Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE
Trans. Image Process. 15(11), 3531–3539 (2006)

5. Nayef, N., et al.: ICDAR 2017 robust reading challenge on multi-lingual scene text
detection and script identification-RRC-MLT. In: 2017 14th IAPR International
Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 1454–
1459. IEEE (2017)

6. Ouzounis, G.K., Wilkinson, M.H.: Mask-based second-generation connectivity and
attribute filters. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 990–1004 (2007)

7. Ouzounis, G.K., Wilkinson, M.H.: Hyperconnected attribute filters based on k-flat
zones. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 224–239 (2011)

8. Passat, N., Naegel, B.: Component-hypertrees for image segmentation. In: Soille,
P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 284–295.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21569-8 25

9. Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for
image and sequence processing. IEEE Trans. Image Process. 7(4), 555–570 (1998)

10. Serra, J.: Connectivity on complete lattices. J. Math. Imaging Vis. 9(3), 231–251
(1998)

11. Silva, D.J., Alves, W.A., Morimitsu, A., Hashimoto, R.F.: Efficient incremental
computation of attributes based on locally countable patterns in component trees.
In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3738–
3742. IEEE (2016)

12. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM
(JACM) 22(2), 215–225 (1975)

13. Wilkinson, M.H., Gao, H., Hesselink, W.H., Jonker, J.E., Meijster, A.: Concurrent
computation of attribute filters on shared memory parallel machines. IEEE Trans.
Pattern Anal. Mach. Intell. 30(10), 1800–1813 (2008)

https://doi.org/10.1007/978-3-319-18720-4_57
https://doi.org/10.1007/978-3-642-21569-8_25

	Minimal Component-Hypertrees
	1 Introduction
	2 Background
	2.1 Images and Connectivity
	2.2 Component Trees
	2.3 Algorithmic Background
	2.4 Component-Hypertrees

	3 Minimal Component-Hypertree
	3.1 Data Structure
	3.2 Algorithm Template
	3.3 Detection of New Nodes Needed to Be Allocated
	3.4 Graph Update: Node Allocation and Arc Addition

	4 Experiments
	5 Conclusion
	References




