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Abstract. In this paper, we consider the task of discovering the com-
mon objects in images. Initially, object candidates are generated in each
image and an undirected weighted graph is constructed over all the can-
didates. Each candidate serves as a node in the graph while the weight
of the edge describes the similarity between the corresponding pair of
candidates. The problem is then expressed as a search for the Maximum
Weight Clique (MWC) in this graph. The MWC corresponds to a set
of object candidates sharing maximal mutual similarity, and each node
in the MWC represents a discovered common object across the images.
Since the problem of finding the MWC is NP-hard, most research of
the MWC problem focuses on developing various heuristics for finding
good cliques within a reasonable time limit. We utilize a recently very
popular class of heuristics called local search methods. They search for
the MWC directly in the discrete domain of the solution space. The pro-
posed approach is evaluated on the PASCAL VOC image dataset and
the YouTube-Objects video dataset, and it demonstrates superior per-
formance over recent state-of-the-art approaches.

Keywords: Common Object Discovery · Visual Similarity ·
Maximum Weight Clique · Local search algorithm

1 Introduction

For an undirected weighted graph G = (V,E), where V is the set of vertices and
E is the set of edges, a clique C is a subset of vertices in V in which each pair
of vertices is connected by an edge in E. The Maximum Weight Clique (MWC)
problem is to find a clique C which maximizes

w(C) =
∑

vi∈C

wV (vi) +
∑

vi,vj∈C

wE(vi, vj), (1)
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where wV : V → R and wE : E → R are the weight functions for the vertices
and edges respectively. Successfully solving the MWC problem leads to various
applications in practice.

In this paper, we focus on the task of common object discovery, which aims
at discovering the objects of the same class in an image collection. Co-localizing
objects in unconstrained environment is challenging. For images in the real-
world applications, such as those in the PASCAL datasets [8,9], the objects of
the same class may look very different due to viewpoint, occlusion, deformation,
illumination, etc. Also, there could be considerable diversities within certain
object class such as human beings, for their differences in gender, age, costume,
hair style or skin color. Besides, there could be multiple common objects in
the given set of images, thus the definition of “common” may be ambiguous. In
addition, the efficiency of the involved method is very significant in time sensitive
applications such as object co-localization in large collections of images or video
streams.

To achieve robust and efficient object co-localization, we formulate the task
as a Maximum Weight Clique (MWC) problem. It aims at finding a group of
objects that are most similar to each other, which corresponds to a MWC in the
associated graph. The nodes in the graph correspond to the object candidates
generated from the given image collection, while the weight on an edge indicates
how similar two given candidates are. We can discover a set of common objects by
finding the MWC in the associated graph. Each node in the MWC is a discovered
common object across the images. The main idea of the paper is illustrated in
Fig. 1.

Fig. 1. Given a set of object candidates generated from an image collection (left), our
goal is to find common objects by searching for the maximum weight clique in the
associated graph. Each node in the clique (right) corresponds to a discovered common
object.

The main contributions of this work are as follows. (1) We address the task of
object co-localization as a well-defined MWC problem in the associated graph.
It provides a practical and general solution for research and applications related
to the MWC problem. (2) We develop a hashing based mechanism to detect
the revisiting of the local optimum in the local search based MWC solver [35].
It can alleviate the cycling issue in the optimization process. (3) The Region
Proposal Network (RPN) [25] is applied for efficiently generating the object
candidates. The candidates are then re-ranked to improve the robustness against
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the background noise. (4) A Triplet Network (TN) is learned to obtain the feature
embeddings of the object candidates, so as to construct a reliable affinity measure
between the candidates. (5) The performance is evaluated on the PASCAL VOC
2007 image dataset [8] and the YouTube-Objects video dataset [16]. Superior
performance is obtained compared to recent state-of-the-art methods.

2 Related Works

The problem of common object discovery has been investigated extensively in the
past few years. Papazoglou et al. [22] view the task as a foreground object mining
problem, where Optical Flow is used to estimate the object motion and the
Gaussian Mixture model is utilized to capture the appearance of the foreground
and background. Cho et al. [6] tackle the problem using a part-based region
matching method, where a probabilistic Hough transform is used to evaluate the
quality of each candidate correspondence. Joulin et al. [15] extend the method in
[6] to co-localize objects in video frames, and a Frank-Wolfe algorithm is used to
optimize the proposed quadratic programming problem. Zhang et al. [37] apply a
part-based object detector and a motion aware region detector to generate object
candidates. The problem is then formulated as a joint assignment problem and
the solution is refined by inferring shape likelihoods afterwards. Kwak et al. [17]
also focus on the problem of localizing dominant objects in videos, where an
iterative process of detection and tracking is applied. Li et al. [18] devise an
entropy-based objective function to learn a common object detector, and they
address the task with a Conditional Random Field (CRF) model. Wei et al. [36]
perform Principal Component Analysis (PCA) on the convolutional feature maps
of all the images, and locate the most correlated regions across the images. Wang
et al. [32] use segmentations produced by Fully Convolutional Networks (FCN)
as object candidates. Then they discover common objects by solving a N -Partite
Graph Matching problem.

Many of these methods explicitly or implicitly employ graph based models to
interpret the task of object co-localization. Similarly in this paper, an undirected
weighted graph is first constructed over the given set of images, modeling the
visual affinities between the object candidates. We find the common objects as
the Maximum Weight Clique (MWC) in this graph, where each node in the clique
corresponds to a detected common object across the images. The MWC problem
is NP-hard and it is difficult to obtain a global optimal solution. Generally, there
are two types of algorithms to solve the MWC problem: the exact methods such
as [12,14] and the heuristic methods such as [2,10,21,24,35]. Most existing works
on the MWC problem focused on the heuristic approaches due to their efficiency
in space and time. In this paper, our optimization algorithm adopts a simple
variant of Tabu Search (TS) heuristic to discover the MWC, and it has several
features: (1) it considers the local circumstance of a vertex in each step; (2)
it takes only an auxiliary Boolean array for implementation; (3) it requires no
extra parameters besides the time limit.
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3 Problem Formulation

Given a set of N images I = {I1, I2, . . . , IN}, we generate a set of object can-
didates from all images B = {b | b ∈ P(I), I ∈ I}, where P(I) is the set
of object candidates extracted from image I and b is a bounding box of that
object candidate. Suppose ni object candidates are extracted from image Ii, then
|B| =

∑N
i=1 ni candidates will be generated from the image collection I in total.

We denote n = |B| in the remainder of the paper. Let o(bi) be the score of some
bounding box bi containing the common object, and let s(bi, bj) represent the
similarity between two object candidates in bi and bj , then the task of object
co-localization can be formulated as finding an optimal subset B∗ ⊂ B such that

w(B∗) =
∑

bi∈B∗
o(bi) +

∑

bi,bj∈B∗,bi �=bj

s(bi, bj) (2)

is maximized, with the constraint that at most one object candidate can be
selected from each image. For the reason explained in Sect. 4.2, we set o(bi) = 0
for all bi, which means it is a Maximum Edge Weight Clique problem. However,
the proposed MWC solver can optimize problems with both vertex and edge
weights.

Further, we assign a label xi ∈ {0, 1} to each object candidate bi, where
xi = 1 means that the object candidate bi is selected in the subset B∗. Thus, an
indicator vector x ∈ {0, 1}n is used to identify the common objects discovered
in B. Besides, an affinity matrix A ∈ R

n×n is constructed, where

Aii = o(bi), ∀bi ∈ B, and Aij = s(bi, bj), ∀bi, bj ∈ B. (3)

Here we assume the similarity metric s(bi, bj) is symmetric and non-negative,
namely Aij = Aji ≥ 0. On the other hand, we remove the edge between object
candidates bi and bj if they are present in the same image, hence they cannot
be simultaneously selected in B∗. Then the problem in (2) can be expressed as
finding an optimal indicator vector x ∈ {0, 1}n, such that xTAx is maximized.
Hence the selected nodes in B∗ correspond to a MWC in the constructed graph,
and they represent the discovered set of common objects. To summarize, the
overall objective function of the MWC problem can be written in the matrix
form as

x∗ = argmax
x

xTAx, s.t. x ∈ {0, 1}n. (4)

To this end, the task of object co-localization is formulated as a Maximum
Weight Clique (MWC) problem as described in (1).

4 Graph Construction

4.1 Object Candidates Generation

The nodes in the associated graph correspond to the object candidates in all
the images. We expect those candidates to cover as many foreground objects as
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possible. Meanwhile, the total number of candidates will also influence the search
space for the MWC. Therefore, our first priority is to find a proper method to
extract the object candidates. The Region Proposal Networks (RPN) [25] is used
in our approach to generate rectangular object candidates from each image. We
use the raw RPN proposals in the intermediate stage and apply Non-Maximum
Suppression (NMS) [28] to remove redundant boxes. We choose the top-K scoring
proposals from each image to construct the associated graph for computational
efficiency. We consider two different proposal scoring measures. The first one is
commonly used and is based on RPN objectness score of each object candidate.
RPN also generates a vector of class likelihoods for each object candidate, and
we propose to re-rank the object candidates according to the entropy of the class
distribution. Since the entropy is a measure of uncertainty, it serves a similar
purpose as the objectness score but tend to be more accurate in this setting.
Hence we can re-rank the raw RPN proposals according to the entropy, and
select the top-K scoring boxes with low uncertainty as object candidates in each
image.

4.2 Common Objectness Score

For object co-localization, the underlying class of the common object is unknown
in advance. Thus, the score o(b) of some object b being the common one is
difficult to estimate. A possible way is to set o(b) as the objectness score of
b. But this can be problematic when b indeed contains an object but not the
common one. Thus, it may lead to unexpected results if the objectness score is
directly used, as observed in [31]. Therefore, we set the contribution of the score
to the objective function (2) to zero, i.e.,

Aii = o(bi) = 0,∀bi ∈ B. (5)

In the case of object co-localization, it means we focus on the MWC problem
with edge weight only. However, as shown in Sect. 5, the proposed MWC problem
solver is generic and can be applied to other tasks where both vertex weights
and edge weights are present.

4.3 Object Representation and Similarity

The edge weights in the associated graph represent visual similarity between
the selected object candidates. Thus, we need an accurate way to represent the
object candidates and evaluate their similarities. In this paper, we employ the
Triplet Network framework [13] to learn the deep feature embeddings of the
object candidates. Suppose a pre-trained Convolutional Neural Network (CNN)
is selected to extract the deep features f(b;w) for each object candidate b ∈ B,
where w is the set of parameters of the CNN. In this framework, a set of triplets
is then constructed for fine-tuning the parameters w. Each triplet consists of a
reference object br, a positive object bp and a negative object bn. Namely, br
and bp represent a pair of similar objects, while br and bn are a pair of dissimilar
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objects. Two objects are viewed as similar if they belong to the same category
and otherwise dissimilar. Then, the hinge loss of a triplet is defined as

l(br, bp, bn) = max{0, λ + s(br, bn) − s(br, bp)}, (6)

where λ is a margin threshold controlling how different s(br, bn) and s(br, bp)
should be. The goal of the Triplet Network learning is to find a set of optimal
parameters w, such that the sum of the hinge loss of all triplets

L(T ) =
∑

(br,bp,bn)∈T
l(br, bp, bn) (7)

is minimized over a training set of triplets T . Namely, in the specified metric
space, the learning process makes similar objects closer to each other, while dis-
similar objects are pushed away. In the triplet hinge loss l(br, bp, bn), frequently
used similarity metrics include dot-product (the linear kernel) and the Euclidean
distance. But the output ranges of these metrics are not bounded, and this may
invalidate the margin threshold λ in the loss function, as observed in [5]. In addi-
tion, more complex metrics can be also used here, such as the polynomial kernel
and the Gaussian kernel (the RBF kernel). But there are a few more parameters
in these kernel functions and they have to be chosen wisely. For simplicity, we
define s(bi, bj) as the cosine similarity between two CNN feature vectors f(bi;w)
and f(bj ;w), namely

Aij = s(bi, bj) =
f(bi;w)T f(bj ;w)

‖f(bi;w)‖‖f(bj ;w)‖ , (8)

since it is already neatly bounded and parameter free. The parameters w in the
overall loss function (7) can be updated via the standard Stochastic Gradient
Descent (SGD) method. An intuitive description of our triplet network can be
found in Fig. 2.

CNN Backbone L2 Normaliza on

CNN Backbone L2 Normaliza on

CNN Backbone L2 Normaliza on

Triplet Loss 

Fig. 2. The architecture of our triplet network. The weights in the CNN backbones
are shared in the three branches. The goal is to learn a feature embedding such that
similar objects are closer to each other in the metric space while dissimilar objects are
pushed away.
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5 The MWC Problem Solver

We use a local search based method to solve the MWC problem (4). The local
search usually moves from one clique to another until it reaches the cutoff, then
the best clique found is kept as the solution. The pipeline of our MWC solver is
summarized in Algorithm 1.

Algorithm 1. Our MWC Problem Solver
Input : An undirected weighted graph G = (V,E) and a time limit t
Output: A clique C∗ with the maximum clique weight

1 C∗ ← C ← ∅; lastStepImproved ← true;
2 step ← 1; confChange(v) ← 1, ∀v ∈ V ;
3 while elapsed time < t do
4 if C = ∅ then add a random vertex into C;
5 v ← argmaxv score(v, C), v ∈ Sadd(C), s.t. confChange(v) = 1;
6 (u, u′) ← argmax(u,u′) score(u, u

′, C), (u, u′) ∈ Sswap(C), s.t.
confChange(u′) = 1;

7 if v �= null then
8 if (u, u′) = (null, null) or score(v) > score(u, u′) then
9 C ← C ∪ {v};

10 else
11 C ← C\{u} ∪ {u′};

12 lastStepImproved ← true;

13 else
14 if (u, u′) = (null, null) or score(u, u′) < 0 then
15 if lastStepImproved = true then
16 if w(C) > w(C∗) then C∗ ← C;
17 if hash(C) is already marked then
18 Drop all the vertices in C;
19 continue;

20 Label hash(C) as marked;

21 lastStepImproved ← false;

22 else
23 lastStepImproved ← true;

24 v′ ← argmaxv′ score(v′, C), v′ ∈ C;
25 if (u, u′) = (null, null) or score(v′, C) > score(u, u′, C) then
26 C ← C\{v′};
27 else
28 C ← C\{u} ∪ {u′};

29 Apply the Strong Configuration Checking (SCC) strategy;
30 step++;

31 return C∗;
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Compared to RSL and RRWL in [11], our algorithm starts from a random
single-vertex clique, while they start with a random maximal clique. This is par-
ticularly useful when the run-time is restricted. Besides, while RSL and RRWL
restart when a solution is revisited in the so-called first growing step, our algo-
rithm simply restarts when a local optimum is revisited. In this way, our solver
spends less time on searching the local area that has been visited intensively.

5.1 Detecting Revisiting via a Hash Table

In recent methods, the local search typically moves in a deterministic way, i.e.,
no randomness exists in this process. Thus, a sequence of steps from a previously
visited local optimum would be simply repeated, and it may not improve the
best clique found so far. Hence, we improve this kind of methods by introducing
a cycle elimination based restart strategy, where a hash table is used to approx-
imately detect the revisiting of a local optimum. Given a candidate solution B∗

c

and a prime number p, we define the hash value of B∗
c as

hash(B∗
c ) = (

∑

bi∈B∗
c

2i) mod p, (9)

where i ∈ {1, 2, . . . , n} is the index of bi in the entire object candidate set B. If p
is large enough, the chance of collision is negligible. The parameter p can be set
according to the memory capacity of the machine. In the proposed algorithm,
the revisiting of a local optimum is detected by checking whether the respective
hash entry has been visited. If the local optimum was not visited before, the
local search continues. Otherwise, the solver will be restarted and try to look for
a better solution.

5.2 Scoring Functions and Candidate Nodes

Given an undirected weighted graph G = (V,E), we describe our approach
to finding the MWC in Algorithm1. To begin with, we first introduce some
notations used in our algorithm. In the local search for the MWC, the add
operation adds a new node to the current clique C. The drop operation drops
an existing node from the current clique C. The swap operation swaps two nodes
from inside and outside the current clique C. Each operation returns a new clique
as the current solution, which maximizes the gain of the clique weight. Suppose
w(C) is the weight of a clique C defined in Eq. (1), then for the add and drop
operation, the gain of adding and dropping a node v is computed as

score(v, C) =

{
w(C ∪ {v}) − w(C) if v 	∈ C;
w(C\{v}) − w(C) if v ∈ C.

(10)

For swap operation, the gain of clique weight when swapping two nodes (u, v) is

score(u, v, C) = w(C\{u} ∪ {v}) − w(C), u ∈ C, v 	∈ C, (u, v) 	∈ E. (11)
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We denote the set of neighbors of a vertex v as N (v) = {u|(u, v) ∈ E}. To
ensure that the local search always maintains a clique, we define two operand
sets. Firstly for a clique C, we define the set of candidate nodes for the add
operation as

Sadd(C) =

{
{v|v 	∈ C, v ∈ N (u),∀u ∈ C} if |C| > 0;
∅, otherwise.

(12)

Secondly, the set of candidate node pairs for the swap operation is defined as

Sswap(C) =

{
{(u, v)|u ∈ C, v �∈ C, (u, v) �∈ E, v ∈ N (w), ∀w ∈ C\{u}} if |C| > 1;

∅, otherwise.

(13)
To maximize the gain of clique weight in each step, the add operation adds

a node v∗ to the current clique C such that v∗ = argmaxv score(v, C), v ∈
Sadd(C). The drop operation drops a node v∗ = argmaxv score(v, C), v ∈ C
from the current clique C. The swap operation swaps two nodes (u∗, v∗) such
that (u∗, v∗) = argmax(u,v) score(u, v, C), (u, v) ∈ Sswap(C).

5.3 The Strong Configuration Checking Strategy

We apply the Strong Configuration Checking (SCC) strategy [35] to avoid revisit-
ing a solution too early. The main idea of the SCC strategy works as follows. After
a vertex v is dropped or swapped from a clique C, it can be added or swapped
back into C only if one of its neighbors is added into C. Suppose confChange(v)
is an indicator function of node v, where confChange(v) = 1 means v is allowed
to be added or swapped into the candidate solution and confChange(v) = 0
means v is forbidden to be added or swapped into the candidate solution, then
the SCC strategy specifies the following rules:

1. Initially confChange(v) is set to 1 for each vertex v;
2. When v is added, confChange(u) is set to 1 for all u ∈ N (v);
3. When v is dropped, confChange(v) is set to 0;
4. When (u, v) ∈ Sswap(C) are swapped, confChange(u) is set to 0.

6 Experiments

To evaluate the performance of our method in comparison to other approaches,
experiments are conducted on the PASCAL VOC 2007 image dataset [8] and the
YouTube-Objects video dataset [16]. The standard PASCAL criterion Intersec-
tion over Union (IoU) is adopted for evaluation. Namely, a predicted bounding
box bp is correct if IoU(bp, bgt) = area(bp∩bgt)

area(bp∪bgt)
> 0.5, where bgt is a ground-truth

annotation of the bounding box. Finally, the percentage of images with correct
object localization (CorLoc) [18] is used as the evaluation protocol. Our method
is denoted as LSMWC for local search MWC solver.
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6.1 Implementation Details

Our experiments are carried out on a desktop machine with two Intel(R)
Core(TM) i7 CPUs (2.80 GHz) and 64 GB memory. A GeForce GTX Titan X
GPU is used for training and testing related deep neural networks. The proposed
MWC solver is implemented in C/C++. The deep learning framework Caffe and
MatConvNet are utilized as carriers for building the Region Proposal Network
and the Triplet Network. The pipeline of the system is organized in MATLAB
with some utilities written as MEX files, due to the efficiency for high level data
management and visualization. The default parameters are used to learn RPN
and generate the object candidates. A threshold of 0.5 is used for the NMS pro-
cess to remove redundant object proposals. The best K = 20 object candidates
are selected in each image. We set λ = 0.25 in the hinge loss (6) of a triplet.
The prime number p in the hash function (9) is set to 109 + 7, thus the hash
table consumes around 1 GB memory. The RPN and Triplet Network in our
method are built upon the VGG-f model [30] as well as the VGG-16 model [4].
Compared to the VGG-16 model, the structure of the VGG-f model is much
simpler thus more computationally efficient. The VGG-f and VGG-16 models
are pre-trained on the ImageNet dataset [29] and fine-tuned on the Microsoft
COCO dataset [19]. All parameters are fixed the same in the experiments unless
explicitly stated otherwise.

6.2 Experiments on the PASCAL07 Dataset

The PASCAL VOC 2007 dataset [8] is used to evaluate the performance of object
co-localization in images. The dataset is split as a training-validation set and a
test set, each with about 5,000 images in 20 classes. We follow [15] to construct
a collection of images for object co-localization from the training-validation set
and denote it as PASCAL07. This is fine in our framework, since our RPN and
Triplet networks are not trained on this dataset but on the ImageNet and COCO
datesets as stated in Sect. 6.1.

We first compare the co-localization accuracy of different MWC problem
solvers on the PASCAL07 dataset in Table 1. The graph instances of these MWC
problems are constructed based on the VGG-16 model. Since the PASCAL07
dataset has images from 20 different classes, we construct 20 different graphs, one
graph for each image class. For the experiments on the PASCAL07 dataset, the
average number of nodes in the constructed graphs is 6081.67, and the average
number of edges is 2.16 × 107. The average density of the graphs is 0.9962.
Different solvers are evaluated on exactly the same MWC problem instances
constructed by our co-localization framework. As randomized processes may
exist in different methods, the reported accuracy is taken as the average over 10
runs with different seeds for the random number generator.

For the method [20], it solves the MWC problem in the relaxed continuous
domain and a modified Frank-Wolfe algorithm is proposed to attack the problem.
Similar to our approach, the solver TBMA [1] also solves the MWC problem
directly in the discrete domain. Compared to their solver, our solver will restart
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if a local optimum is revisited, while TBMA will restart if the solution quality
has not been improved for a specified number of steps. As for the solver LSCC
[35], originally it is dedicated to solve the MWC problems where the edge weights
are absent. Namely, the add, swap or drop operations change the weight of a
clique considering related vertex weights only. Here we modify it so that the edge
weights are taken into account in these operations. Two versions of the LSCC
solver in the original paper are evaluated, and they serve as the baseline results
in our experiment. The experiments justify our choice of the MWC problem
solver, which improves the accuracy of object co-localization.

Table 1. Co-localization CorLoc (%) of different MWC solvers on the PASCAL07
dataset.

Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Motor Person Plant Sheep Sofa Train TV Avg
MC [20] 63.0 45.7 56.1 51.9 14.3 47.8 71.9 61.1 36.2 72.3 46.0 57.2 61.3 79.6 62.3 34.3 69.8 39.3 59.4 9.8 52.0

LSCC [35] 61.3 68.3 61.2 48.1 16.8 67.7 76.9 58.5 41.8 72.3 24.5 63.9 68.3 75.5 69.0 28.6 76.0 47.2 62.1 68.4 57.8
[35] + BMS 63.9 68.3 60.9 50.3 49.2 66.7 76.9 59.3 41.1 72.3 23.0 65.1 68.3 77.1 69.8 27.8 76.0 45.9 62.8 68.4 59.7
TBMA [1] 62.2 69.5 62.1 52.5 18.4 71.5 78.5 61.1 49.2 70.9 30.0 62.0 69.7 80.8 66.0 49.4 70.8 50.2 63.6 68.0 60.3
LSMWC 64.7 58.4 60.3 54.1 52.0 71.0 79.2 63.8 43.1 71.6 40.5 64.4 72.1 84.9 69.5 45.3 75.0 51.1 66.3 71.1 62.9

The co-localization accuracy of different object candidate generation and
feature embedding methods on the PASCAL07 dataset is compared in Table 2.
Different CNN models are used to extract the object candidate features, then
the cosine similarity is applied on these deep neural network features. It shows
that re-ranking the object proposals in each image according to the entropy of
the class distribution of each object proposal leads to significantly better results
than directly using the RPN objectness score of each proposal for ranking. With
the involvement of the Triplet Network learning framework, the co-localization
performance improves further. The experiments validate that the performance
of the object co-localization is benefited from the proper choice of the object
candidate generation and feature embedding scheme.

Table 2. Co-localization CorLoc (%) of different strategies on the PASCAL07 dataset.

CNN backbone RPN objectness Object proposal
re-ranking

Triplet loss
fine-tuning

Pre-trained VGG-f model 31.2 53.8 59.3

Pre-trained VGG-16 model 33.1 56.1 62.9

The co-localization accuracy of different object co-localization methods on
the PASCAL07 dataset is reported in Table 3. The results of the compared meth-
ods are directly taken from the corresponding literature. Among these methods
using deep CNN features as visual descriptors [3,7,18,26,27,34,36], our method
demonstrates superior results over recent state-of-the-art methods. The experi-
ments confirm the effectiveness of the proposed object co-localization framework.
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Table 3. Co-localization CorLoc (%) of different methods on the PASCAL07 dataset.

Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Motor Person Plant Sheep Sofa Train TV Avg
Joulin et al [15] 32.8 17.3 20.9 18.2 4.5 26.9 32.7 41.0 5.8 29.1 34.5 31.6 26.1 40.4 17.9 11.8 25.0 27.5 35.6 12.1 24.6
Cho et al [6] 50.3 42.8 30.0 18.5 4.0 62.3 64.5 42.5 8.6 49.0 12.2 44.0 64.1 57.2 15.3 9.4 30.9 34.0 61.6 31.5 36.6
Li et al [18] 73.1 45.0 43.4 27.7 6.8 53.3 58.3 45.0 6.2 48.0 14.3 47.3 69.4 66.8 24.3 12.8 51.5 25.5 65.2 16.8 40.0

Wang et al [34] 37.7 58.8 39.0 4.7 4.0 48.4 70.0 63.7 9.0 54.2 33.3 37.4 61.6 57.6 30.1 31.7 32.4 52.8 49.0 27.8 40.2
Bilen et al [3] 66.4 59.3 42.7 20.4 21.3 63.4 74.3 59.6 21.1 58.2 14.0 38.5 49.5 60.0 19.8 39.2 41.7 30.1 50.2 44.1 43.7
Ren et al [26] 79.2 56.9 46.0 12.2 15.7 58.4 71.4 48.6 7.2 69.9 16.7 47.4 44.2 75.5 41.2 39.6 47.4 32.2 49.8 18.6 43.9
Wei et al [36] 67.3 63.3 61.3 22.7 8.5 64.8 57.0 80.5 9.4 49.0 22.5 72.6 73.8 69.0 7.2 15.0 35.3 54.7 75.0 29.4 46.9
Wang et al [33] 80.1 63.9 51.5 4.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 48.5
Cinbis et al [7] 67.1 66.1 49.8 34.5 23.3 68.9 83.5 44.1 27.7 71.8 49.0 48.0 65.2 79.3 37.4 42.9 65.2 51.9 62.8 46.2 54.2

Rochan et al [27] 78.5 63.3 66.3 56.3 19.6 82.2 74.7 69.1 22.4 72.3 31.0 62.9 74.9 78.3 48.6 29.3 64.5 36.2 75.8 69.5 58.8
LSMWC (VGG-f) 59.7 67.1 60.3 46.4 51.2 68.8 75.9 57.9 40.4 77.3 21.5 64.6 65.2 74.7 67.3 41.6 77.1 48.0 60.9 60.9 59.3
LSMWC (VGG-16) 64.7 58.4 60.3 54.1 52.0 71.0 79.2 63.8 43.1 71.6 40.5 64.4 72.1 84.9 69.5 45.3 75.0 51.1 66.3 71.1 62.9

Table 4. Co-localization CorLoc (%) of different methods on the YouTube-Objects
dataset.

Method Aeroplane Bird Boat Car Cat Cow Dog Horse Motorbike Train Average

Prest

et al. [23]

51.7 17.5 34.4 34.7 22.3 17.9 13.5 26.7 41.2 25.0 28.5

Joulin

et al. [15]

25.1 31.2 27.8 38.5 41.2 28.4 33.9 35.6 23.1 25.0 30.9

Papazoglou

et al. [22]

65.4 67.3 38.9 65.2 46.3 40.2 65.3 48.4 39.0 25.0 50.1

Zhang

et al. [37]

75.8 60.8 43.7 71.1 46.5 54.6 55.5 54.9 42.4 35.8 54.1

Rochan

et al. [27]

56.0 30.1 39.6 85.7 24.7 87.8 55.6 60.2 61.8 51.7 55.3

LSMWC

(VGG-f)

48.5 74.4 52.8 61.6 59.4 69.3 71.4 68.5 73.6 43.0 62.3

LSMWC

(VGG-16)

44.3 68.6 56.7 63.5 50.0 70.7 71.2 75.9 73.8 55.5 63.0

6.3 Experiments on the YouTube-Objects Dataset

The YouTube-Objects dataset [16] is used for object co-localization in videos.
The dataset contains videos collected from YouTube with 10 object classes.
There are about 570,000 frames with 1,407 annotations in the first version
of the dataset [23]. According to our knowledge, it is the largest available
video dataset with bounding-box annotations on multiple classes. The individual
video frames after decompression are used in our experiments to avoid possi-
ble confusion when applying different video decoders. We only perform object
co-localization on video frames with ground-truth annotations, following the
practice in [15]. No additional spatial-temporal information is utilized in our
method. The Youtube-Objects dataset comes with the test videos divided in 10
classes according to which dominant object is mostly present in them. Hence we
construct 10 different graphs for this dataset. The co-localization accuracy of
different methods on the YouTube-Objects dataset are summarized in Table 4.
Among all the methods, [27,37] also utilize deep networks for visual representa-
tion. The experiments justify that the proposed object co-localization framework
is also very effective for mining common objects in videos.
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7 Conclusion

In this paper, we present a novel framework to address the problem of object
co-localization. It provides a practical and general solution for research and appli-
cations related to the MWC problem. Besides, deep learning based methods are
utilized to localize the candidates of the common objects and describe their visual
characteristics. This makes it possible to better discriminate the inter-class sim-
ilarities and identify the intra-class variations. Finally, a cycle elimination based
restart strategy is proposed to guide the local search for the MWC. It success-
fully resolves the cycling issue in the optimization process. The experimental
results on the object co-localization tasks demonstrate that our MWC solver is
particularly suitable for graphs with high density. The proposed method shows
significant improvements over several strong baselines.
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