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Abstract. Rigid motions on 2D digital images were recently investi-
gated with the purpose of preserving geometric and topological proper-
ties. From the application point of view, such properties are crucial in
image processing tasks, for instance image registration. The known ideas
behind preserving geometry and topology rely on connections between
the 2D continuous and 2D digital geometries that were established via
various notions of regularity on digital and continuous sets. We start by
recalling these results; then we discuss the difficulties that arise when
extending them from Z

2 to Z
3. On the one hand, we aim to provide a

discussion on strategies that prove to be successful in Z
2 and remain

valid in Z
3; on the other hand, we explain why certain strategies cannot

be extended to the 3D framework of digitized rigid motions. We also
emphasize the relationships that may exist between specific concepts
initially proposed in Z

2. Overall, our objective is to initiate an investiga-
tion about the most promising approaches for extending the 2D results
to higher dimensions.

1 Introduction

Geometric transformations are often involved in 2D and 3D digital image pro-
cessing such as image registration [26]. Among them, rigid motions, i.e. trans-
lations, rotations and their composition, are fundamental ones. When a rigid
motion is applied to a digital image, we need to digitize the result in order to
map back each point onto the Cartesian grid. In such a point-wise model of rigid
motions in Z

n, this final digitization step induces discontinuities in the trans-
formation space. A direct consequence is the loss of geometric and topological
invariance during rigid motions in Z

n, as shown in Fig. 1, by contrast with rigid
motions in R

n where geometry and topology are preserved.
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Fig. 1. Digital images (left) and their images under digitized rigid motions (right). (a)
A digital disk. (b) A digital plane. These sets preserve neither topology nor geometry.

These topological issues have been studied in Z
2. In particular, a class of

digital images that preserve their topological properties during rigid motions—
called regular images—was identified, as well as the “regularization” process
based on an up-sampling strategy. This regularization approach allows creating
regular images out of non-regular ones [18]. However, this up-sampling strategy
in Z

2 cannot be directly extended to Z
3, leading to topological open problems

in 3D digitized rigid motions [1]. In this paper, we investigate this topic.
In particular, we consider an alternative approach to regularity, based on

quasi-r-regular polygons, which are used as intermediate continuous models of
digital shapes for their rigid motions in Z

2 [16]. This approach, which relies on
a mixed discrete–continuous paradigm (see [9] for related works), relies on three
steps: polygonizing the boundary of a given digital set; applying a rigid motion
on the polygon; and digitizing the transformed polygon. Topological issues may
occur during the last step. In this context, the class of quasi-r-regular polygons
provides guarantees on topological preservation between the polygons and their
digitized analog. It should be mentioned that quasi-r-regularity is related to
the classical notions of r-regularity [20] and r-half-regularity [25] for continuous
sets with smooth and polygonal boundaries, respectively. The main advantage
of this approach is its possible extension to 3D [17], by contrast to the notion of
regularity.

Our first contribution is a link between the two concepts of regularity and
quasi-r-regularity, in 2D. We also show that such a link does not exist in 3D.
This difference explains why a straightforward extension of image regularity to
3D does not preserve topology under the point-wise rigid motions in Z

3. This fact
emphasizes that quasi-r-regular polyhedra may be a key concept for topology-
preserving 3D rigid motion on Z

3. Then, a question arises: which polyhedriza-
tion method(s) we can guarantee to generate quasi-r-regular polyhedra from 3D
binary images? Our first investigations show that polyhedral isosurfaces gener-
ated by the marching cubes method [12]—mostly used for 3D digital images—do
not fulfill quasi-r-regularity requirements in R

3, whereas, its 2D analog, namely
the marching squares method allows one to generate quasi-r-regular polygons
in R

2.
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Fig. 2. (a) Points of Z
2 (triangles), initially located at the center of unit squares of

the Cartesian tiling of the Euclidean space. (b) After a rigid motion T of these points
(circles), some of the unit square cells contain no point (non-surjectivity, green cells)
or two points (non-injectivity, red cells); the transformation T is no longer bijective.
(Color figure online)

2 Rigid Motions on Z
n

Let us consider a bounded, closed, connected subset X of the Euclidean space
R

n, n ≥ 2. A rigid motion on R
n is defined by a mapping

∣
∣
∣
∣

T : Rn → R
n

x �→ Rx + t (1)

where R is a rotation matrix and t ∈ R
n is a translation vector. Such bijective

transformation T is isometric and orientation-preserving, so that T(X ) has the
same shape as X i.e., both its geometry and topology are preserved.

If we simply apply a rigid motion T, such as defined in Eq. (1), to the discrete
set Z

n, we generally have T(Zn) �⊆ Z
n. Then, in order to map back onto Z

n, we
need a digitization operator

∣
∣
∣
∣

D : Rn → Z
n

(x1, . . . , xn) �→
(⌊

x1 + 1
2

⌋

, . . . ,
⌊

xn + 1
2

⌋) (2)

where �s	 denotes the greatest integer lower than s. A discrete version of T is
then obtained by

T = D ◦ T|Zn (3)

so that the point-wise rigid motion of a finite subset X on Z
n is given by T (X).

Due to the behavior of D that maps Rn onto Z
n, digitized rigid motions are, most

of the time, non-bijective (see Fig. 2). Besides, they guarantee neither topology
nor geometry preservation of X (see Fig. 1).
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3 Regular Images and Topological Invariance Under
Rigid Motions

The above problems were studied in [18] and led to the notion of regularity in
Z
2 defined in the frameworks of digital topology [7] and well-composed images

[11] (see Sect. 3.2). Unfortunately, this notion of regularity is inadequate in Z
3

(Sect. 3.3).

3.1 Digital Topology and Well-Composed Images

Digital topology [7] provides a simple framework for handling the topology of
binary images in Z

n. It is shown in [14] that it is compliant with other dis-
crete models (e.g. Khalimsky grids [5] and cubical complexes [8]) but also with
continuous notions of topology [15].

Practically, digital topology relies on adjacency relations: two distinct points
p, q ∈ Z

2 are k-adjacent if ‖p − q‖� ≤ 1 with k = 2n (resp. 3n − 1) when
� = 1 (resp. ∞). In the case of Z

2 (resp. Z
3), we retrieve the well-known

4- and 8-adjacency (resp. 6- and 26-adjacency) relations. If two points p, q are
k-adjacent, we note p �k q.

From the reflexive–transitive closure of the k-adjacency relation on a finite
subset X ⊂ Z

n, we derive the k-connectivity relation on X. It is an equivalence
relation whose equivalence classes are called the k-connected components of X.
Due to paradoxes related to the discrete version of the Jordan theorem [13],
some dual adjacencies are used for X and its complement X = Z

n \ X, namely
the (k, k)-adjacencies [22], where (k, k) = (2n, 3n − 1) or (3n − 1, 2n).

The notion of well-composedness [11] was then introduced to characterize
some digital sets X whose structure intrinsically avoids the topological issues of
the Jordan theorem in Z

2 and further in higher dimensions.

Definition 1 (Well-composed sets [11]). We say that a set X ⊂ Z
2 is weakly

well-composed if any 8-connected component of X is also a 4-connected compo-
nent. We say that X is well-composed if both X and X are weakly well-composed.

The notion of well-composedness on sets is trivially extended to binary images:
an image I : Z2 → {0, 1}, defined by the finite set X = I−1({1}) = {p ∈ Z

2 |
I(p) = 1} is well-composed when X is well-composed.

This definition implies that the boundary1 of X is a set of 1-manifolds when-
ever X is well-composed. In particular, a definition of well-composedness in Z

n,
n ≥ 3, is based on this (n − 1)-manifoldness characterization. This discussion is
out of the scope of this paper; the interested reader is referred to [4,10] for more
details.
1 Here, the notion of boundary is related to the continuous embedding of X into the

Euclidean space R
2. More precisely, we associate each point p ∈ X with the closed

unit square i.e., a Voronoi cell or a pixel centered in p. The union of these squares
forms a polygon P in R

2, and we consider the boundary of this polygon. The way of
passing from X ⊂ Z

2 to P ⊂ R
2 will be called “polygonization” and more extensively

discussed in Sect. 4.
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3.2 Topological Invariance Under Rigid Motions in Z
2

Given a binary image I, a rigid motion T : Z
2 → Z

2, and the transformed
image2 IT obtained from I and T , a frequent question in image analysis is:
“does T preserve the topology between I and IT ?”. It is generally answered by
observing the topological invariants of these images.

Among the simplest topological invariants are the Euler-Poincaré character-
istics and the Betti numbers. However, these are too weak to accurately model
the notion of “topology preservation” between digital images [13]. Therefore, it
is necessary to consider stronger topological invariants, e.g. the (digital) funda-
mental group [6], the homotopy-type (considered via various notions of simple
points [2,3] or simple sets [19]), or the adjacency tree [21]. The adjacency tree
was considered in [18] and allowed to develop comprehensive proofs of the topol-
ogy preservation properties. Indeed, in the 2D case, this topology preservation
is equivalent to the preservation of the homotopy-type [23], that is the most
commonly used topological invariant in 2D image processing.

Definition 2 (Topological invariance [18]). Let I be a binary and well-
composed image. We say that I is topologically invariant if any transformed
image IT has an adjacency-tree isomorphic to that of I.

In [18], a new notion of regularity was then introduced for 2D images.

Definition 3 (Regular image [18]). Let I : Z2 → {0, 1} be a non-singular3,
well-composed image. Let v ∈ {0, 1}. We say that I is v-regular if for any p, q ∈
I−1({v}), we have

(

p �4 q
)

⇒
(

∃� ⊆ I−1({v}), p, q ∈ �
)

(4)

where � = {x, x + 1} × {y, y + 1} ⊂ Z
2. We say that I is regular if it is both

0- and 1-regular.

The regularity—which strengthens the notion of well-composedness—
provides sufficient conditions for topological invariance under rigid motions.

Theorem 1 ([18]). An image I : Z2 → {0, 1} is topologically invariant if it is
regular.

3.3 Topological Alterations Under Rigid Motions on Z
3

In Z
2, Definition 3 describes a regular set X (resp. its complement X) as a cover of

2×2 squares that must locally intersect everywhere. Intuitively, the extension of

2 In practice, we consider the backward transformation model such that T = D ◦
(T−1)|Z2 rather than Eq. (3), so that T is surjective. This means that the transformed

image IT = I ◦D◦ (T−1)|Z2 = I ◦T has no point with either no or double/conflicted
values.

3 An image I is singular if ∃p ∈ Z
2, ∀q ∈ Z

2,
(
q �4 p

)
⇒

(
I(p) �= I(q)

)
.
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Fig. 3. (a) A sample of a regular set X ⊂ Z
3, illustrated as its voxel polyhedron P ⊂ R

3

(in green); X is 6-connected. Let us consider a rigid motion T−1 of Z3, a part of which
(transformation of a point and its 6-adjacent neighborhood) is illustrated by blue dots.
The central point (in dark blue) lies in P , whereas all of its 6-adjacent points (in light
blue) do not. With such a transformation, [D◦(T−1)]−1(X) is not 6-connected anymore.
(b,c) A counterexample to the topology-preservation of a part of a 3D regular image
under rigid motion: (b) a part of a regular set, which is 6-connected; (c) the transformed
set, obtained after applying a rigid motion, which is no longer 6-connected; see, e.g.
the blue voxel, which has all of its 6-adjacent points in the background. (d,e) Another
counterexample to the topology-preservation of a 3D regular image under rigid motion:
(d) a regular set, which is 6-connected; (e) the transformed set, which is no longer
6-connected (see the blue voxel). (Color figure online)

this definition to Z
3 would consist of considering a cover of 2 × 2 × 2 cubes,

that would also locally overlap everywhere. One may expect that a regular
image in Z

3 would also be topologically invariant. However, this is false, in
general.

Indeed, for any regular image I containing a connected set X (composed of
at least one 2 × 2 × 2 cube), we can find an ad hoc transformation T and a
point p ∈ Z

3 such that IT (p) = 1 whereas for any q �6 p we have IT (q) = 0.
An example of such a case is illustrated in Fig. 3(a). This provides us with
counterexamples to the putative extension of Theorem 1 to the 3D case. For an
illustration, we refer the reader to Fig. 3(b, c).
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This implies that the notion of regularity reaches its limit of validity4 in
Z
2. Alternative approaches are then required to handle the case of topology

preservation under rigid motions in higher dimensions.

4 Quasi-regular Polytopes and Their Digitization

As discussed previously, the topological properties of digital sets in Z
n may be

altered by rigid motions. This is due, in particular, to the process (Eq. (3)) that
aims to map back the transformed result from R

n to Z
n. In practice, this issue

is the same as the problem of digitization encountered for defining the digital
analog of a continuous set.

Recently, the notion of quasi-r-regularity [16] was introduced together with
an algorithmic scheme in order to perform rigid motions on digital sets in Z

2.
The scheme relies on the use of intermediate modeling of a 2D digital set as a
piecewise affine subset of R

2, namely a polygon. The rigid motion transforms
this polygon, and a result in Z

2 is then retrieved by a final digitization of the
transformed polygon. The polygon in R

2 and its digitized analog in Z
2 have the

same topology if the polygon is quasi-r-regular.
Then, the use of an intermediate continuous model allows one to avoid the

alterations induced by the standard pointwise definition of rigid motions that
led to the difficulties identified in the case of regularity (see Sect. 3.2).

We recall the definitions of quasi-r-regularity that was initially defined in R
2

[16] and then extended to R
3 [17]. These definitions and associated results are

developed in the case of simply connected (i.e. connected, without tunnels/holes)
digital sets.

Definition 4 (Quasi-r-regularity [16,17]). Let X ⊂ R
n (n = 2, 3) be a

bounded, simply connected set. We say that X is quasi-r-regular with margin
r′ − r (with r′ ≥ r > 0) if it satisfies the following four properties:

– X � Br is non-empty and connected,
– X � Br is connected,
– X ⊆ X � Br ⊕ Br′ ,
– X ⊆ X � Br ⊕ Br′ ,

with ⊕,� the standard dilation and erosion operators and Br, B
′
r ⊂ R

n the closed
balls of radius r and r′, respectively.

The Gauss digitization of a quasi-r-regular set X ⊂ R
2 (namely X ∩Z

2) is a
well-composed set that remains simply connected, thus preserving its topological
properties from R

2 to Z
2.

4 Beyond the limitations of regularity, the notion of topological invariance of Defini-
tion 2 is also insufficient in Z

3. Indeed, the adjacency tree cannot model topological
patterns that appear in Z

3, such as the tunnels: e.g. a sphere and a torus have iso-
morphic adjacency trees. Considering stronger topological invariants, e.g. homotopy
type or fundamental group, becomes mandatory.
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Proposition 1 ([16]). If X ⊂ R
2 is quasi-1-regular with margin

√
2 − 1, then

X = X ∩ Z
2 and X = X ∩ Z

2 are both 4-connected. In particular, X ⊂ Z
2 is

well-composed.

In [17], a similar result5 was obtained for convex quasi-r-regular sets of R3.
This result is extended hereafter to any quasi-r-regular sets of R3.

Proposition 2 (Extended from [17]). If X ⊂ R
3 is quasi-1-regular with

margin 2√
3

− 1, then X = X ∩ Z
3 and X = X ∩ Z

3 are both 6-connected.

Proof. We only prove the 6-connectedness of X; the same reasoning holds for X.
Let us first prove that (X ◦ B1) ∩Z

3 is 6-connected. Let p and q be two distinct
points of (X ◦ B1) ∩ Z

3. Let Bp
1 and Bq

1 be two balls of radius 1, included in
X ◦ B1 and such that p ∈ Bp

1 and q ∈ Bq
1 (such balls exist, from the definition

of opening). Let bp and bq be the centers of Bp
1 and Bq

1 , respectively. We have
bp, bq ∈ X �B1, from the definition of erosion. Since X �B1 is connected in R

3,
there exists a continuous path Π from bp to bq in X �B1. Note that for any ball
B1, we always have B1∩Z

3 non-empty and 6-connected; in particular it contains
at least two points of Z3. For a value ε > 0 small enough, two balls B1 and B′

1

with centres distant of ε are such that B1 ∩ B′
1 ∩ Z

3 �= ∅. As a consequence,
the union

⋃

b∈Π B1(b) ∩ Z
3 (with B1(b) the ball of center b) is a 6-connected

set of Z
3, and p, q are then connected in (X ◦ B1) ∩ Z

3. Our purpose is then
to prove that any integer point p in X \ (X ◦ B1) is 6-adjacent to a point of
(X ◦ B1) ∩ Z

3. Let p ∈ X \ (X ◦ B1) be such point. From Definition 4, we have
p ∈ X ⊆ X � B1 ⊕ B 2√

3
. Then, from the definition of dilation, there exists

b ∈ X � B1 such that b is the center of a ball B 2√
3
(b) of radius 2√

3
, and p is a

point within this ball. The distance between b and p is lower than 2√
3
. As b is a

point of X � B1, it is also the center of a ball B1(b) of radius 1 included in X ◦ B1.
From the definition of adjacency, any point q being 6-adjacent to p belongs to the
sphere S1(p) of radius 1 and center p. Let us consider the intersection D between
S1(p) and B1(b). This set D is a spherical dome, namely a part of the sphere S1(p)
with a circular boundary C. This set C also corresponds to the intersection of
S1(p) and the 2D plane orthogonal to the line (bp) and intersecting the segment
[bp] at an equal distance lower than 1√

3
from both b and p. Then, the radius of

this circle C is greater than
√

12 − ( 1√
3
)2 =

√
6
3 . In particular, C encompasses

an equilateral triangle of edge length
√

2. As a consequence, the spherical dome
D of S1(p) bounded by this circle always contains at least one point q �6 p. As
such point q lies in (X ◦ B1) ∩ Z

3, it follows that X is 6-connected. �

Remark 1. The value r′ (see Definition 4), required to define the margin r′ − 1
for quasi-1-regular sets, is

√
2 = 2√

2
in Z

2 and 2√
3

in Z
3. The above proof allows

5 Erratum: In [17], the proposed proof contains an error. The 6-connectedness of (X ◦
B1) ∩ Z

3 is claimed by using [24, Theorem 16] with an invalid value. We correct
this error in the proposed proof of Proposition 2, that does no longer rely on [24,
Theorem 16].
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us to understand that in Z
n, the required value r′ is 2√

n
. Indeed, the crucial

part of the proof is to ensure that a point p of X \ (X ◦ B1) ∩ Z
n remains

2n-adjacent to points of (X ◦ B1) ∩ Z
n. To this end, let us consider a (n − 1)-

simplex of R
n, whose vertices are spatially organized as the n points induced

by the orthonormal basis of Rn. This (n − 1)-simplex must be encompassed by
the (n − 2)-sphere C that is the intersection between the (n − 1)-sphere S1(p)
of center p and radius 1 and the hyperplane orthogonal to the segment [bp] and
equidistant to p and a point b ∈ X � B1 defined as the centre of a ball B 2√

n
(b)

that contains p. Note that p is, by construction, at a distance r′ from b. The
distance between the barycentre of this (n − 1)-simplex and its vertices, i.e. the

radius of the (n − 1)-sphere C is
√

1 − 1
n . Since each point of C is at a distance

1 of p while the center of C is on the segment [bp] at a distance r′
2 from p, it

follows that the distance between p and b, namely r′, is 2√
n
.

The following property is a direct corollary of this remark and it provides a
dimensional limit of validity for the notion of quasi-1-regularity.

Property 1. In R
4, the value r′ required for quasi-1-regularity is 2√

4
= 1. Then,

the margin r′ − r is equal to 0, in other words, no margin is permitted. The
notion of quasi-r-regularity then becomes similar to that of r-regularity [20]. In
particular, only smooth sets of R4 can be quasi-1-regular.

5 Links Between Regularity and Quasi-r-Regularity: The
Cubic Polygonal Model

We now investigate the links between the notions of regularity [18] (Sect. 3) and
quasi-r-regularity [16,17] (Sect. 4). Note that we still focus on simply connected
sets.

5.1 2D Case

The paradigm of quasi-r-regularity for rigid motion of digital sets X ⊂ Z
2 acts

in three steps. First, a polygon P ⊂ R
2 is defined as a continuous representation

of X. Note that there exist various ways of carrying out polygonization. The
main constraint is the coherence between the polygon P and its digital analog
X. In particular, it is important to satisfy P ∩ Z

2 = X. Second, the polygon P
is transformed by T (Eq. (1)). In other words, we build a new polygon PT =
T(P ) = {T(x) | x ∈ P}. Third, the transformed polygon PT ⊂ R

2 is digitized to
map the result back onto Z

2. To this end, we use the Gauss digitization model,
i.e. we set XT = PT ∩ Z

2 = T(P ) ∩ Z
2.

When considering the notion of regularity, at the first sight, the paradigm for
rigid motion of digital sets X ⊂ Z

2 may appear as a different one. It is however
the same. In order to compute the transformed object XT from X, we do not
use the forward transformation model, but the backward one. More precisely,
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we define XT as [D ◦ (T−1)]−1(X), that is XT = {x ∈ Z
2 | D ◦ (T−1)(x) ∈ X}.

But this formula is equivalent6 to XT = T(P�(X))∩Z
2 where P�(X) ⊂ R

2 is the
polygon defined as P�(X) = X ⊕ �, with � ⊂ R

2 the closed, unit square centered
on (0, 0). In other words, we implicitly apply the three-step polygonization-based
algorithm involved in the context of quasi-r-regularity, with a specific kind of
polygonization, called cubic polygonization. This polygonization associates a
digital set X ⊂ Z

2 with its set of pixels, i.e. Voronoi cells in R
2. In particular, it

is plain that such polygonization satisfies P�(X) ∩ Z
2 = X.

The question which now arises is to determine whether a regular digital set X
leads to a quasi-1-regular polygon P�(X). The answer is negative; this emphasizes
the fact that quasi-1-regularity is a sufficient, yet non-necessary condition for
topology preservation.

Property 2. The regularity of a simply connected set X ⊂ Z
2 does not imply the

quasi-1-regularity of P�(X).

To prove this property, it is sufficient to exhibit a counterexample. A simple
one is the object X ⊂ Z

2 defined as the union of two 2 × 2 patterns � inter-
secting in exactly one point; for instance, X = {(0, 0), (1, 0), (0, 1), (1, 1), (2, 1),
(1, 2), (2, 2)}. This set is obviously regular, but the associated polygon P�(X)
is not quasi-1-regular. Indeed, we have P�(X) � B1 = {( 12 , 1

2 ), ( 32 , 3
2 )}, which is

composed of two points in R
2 and is non-connected.

In [18] the strategy for building a regular set from a well-composed set X
was to up-sample X, i.e. to define a new set X2 ∈ Z

2 such that (x, y) ∈ X ⇔
(2x, 2y)+{0, 1}×{0, 1} ⊆ X2. By applying the same strategy on a regular set X,
we can build an up-sampled set X2 ⊂ Z

2 which is still regular, but also quasi-1-
regular. In other words, with the cubic polygonization model, regularity implies
quasi-r-regularity—up to an up-sampling realized by doubling the resolution of
the Cartesian grid.

Proposition 3. If a simply connected set X ⊂ Z
2 is regular, then X2 ⊂ Z

2 is
regular and P�(X2) ⊂ R

2 is quasi-1-regular with margin
√

2 − 1.

Proof. The regularity of X2 is obvious. We show the non-vacuity and connected-
ness of P�(X2) � B1 and the fact that P�(X2) ⊆ P�(X2) � B1 ⊕ B√

2; the same
reasoning holds for P�(X2). Since X is regular, it is defined as X = S ⊕ {0, 1}2
where S = {(x, y) ∈ X | (x, y) + {0, 1}2 ⊂ X}. By definition, we have X2 =
⋃

(x,y)∈S(2x, 2y)+{0, 1, 2, 3}2. Let (x, y) ∈ S. We have ((2x, 2y)+{0, 1, 2, 3}2)⊕
� = [2x− 1

2 , 2x+ 7
2 ]× [2y− 1

2 , 2y+ 7
2 ], and then ((2x, 2y)+{0, 1, 2, 3}2)⊕��B1 =

[2x + 1
2 , 2x + 5

2 ] × [2y + 1
2 , 2y + 5

2 ]. Then we have P�(X2) =
⋃

(x,y)∈S(2x, 2y) +
{0, 1, 2, 3}2 ⊕ � =

⋃

(x,y)∈S [2x − 1
2 , 2x + 7

2 ] × [2y − 1
2 , 2y + 7

2 ] on the one hand,
and P�(X2) � B1 = X2 ⊕ � � B1 ⊇

⋃

(x,y)∈S [2x + 1
2 , 2x + 5

2 ] × [2y + 1
2 , 2y + 5

2 ],
on the other hand. Due to the specific square structure of X2 and its regular-
ity, we have P�(X2) � �2 =

⋃

(x,y)∈S [2x − 1
2 , 2x + 7

2 ] × [2y − 1
2 , 2y + 7

2 ] � �2 =

6 This equivalence, presented here in the 2D case, holds for any dimension n ≥ 2, with
� being the unit n-cube.
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⋃

(x,y)∈S [2x + 1
2 , 2x + 5

2 ] × [2y + 1
2 , 2y + 5

2 ], where �2 is the square of edge size 2
centered on (0, 0). In particular, we have P�(X2)��2 ⊆ P�(X2)�B1, and we note
R = (P�(X2) � B1) \ (P�(X2) � �2) the residue between both. The non-vacuity
of P�(X2) � B1 directly follows from the non-vacuity of P�(X2) � �2. Up to a
translation of (− 1

2 ,− 1
2 ) and a scaling of factor 1

2 , the set P�(X2) � �2 is equal
to

⋃

(x,y)∈S [x, x+1]× [y, y +1]. The existence of a continuous path between two
points of

⋃

(x,y)∈S [x, x + 1] × [y, y + 1] is equivalent to the existence of a 4-path
between two points of

⋃

(x,y)∈S{x, x + 1}×{y, y + 1} =
⋃

(x,y)∈S(x, y)+{0, 1}2 =
X. Since X is 4-connected in Z

2, it follows that P�(X2) � �2 is connected in
R

2. The residue R is composed of connected components of R
2 (namely “tri-

angular” shapes formed by two edges of length 1 adjacent to the border of
P�(X2) � �2 and a third concave, edge defined as a the quadrant of a circle
of radius 1); the connectedness of P�(X2) � B1 = (P�(X2) � �2) ∪ R then fol-
lows from that of P�(X2) � �2. We have P�(X2) = P�(X2) � �2 ⊕ �2. Since
B1 ⊂ �2 ⊂ B√

2, the decreasingness of erosion and increasingness of dilation
lead to P�(X2) ⊆ P�(X2) � B1 ⊕ B√

2. �

5.2 3D Case

As already observed in Sect. 3.3, the extension of the notion of regularity to Z
3

leads to 3D regular sets that may not be topologically invariant (see Fig. 3 for
examples). Actually, we have an even stronger result, regularity in 3D never
leads to quasi-r-regularity.

Property 3. Let X ⊂ Z
3 be a simply connected, regular set. Let P�(X) = X ⊕ �,

with � ⊂ R
3 the closed, unit cube centered at (0, 0, 0). Then P�(X) is never

quasi-1-regular with margin 2√
3

− 1.

To prove this property, it is sufficient to observe that for any salient vertex
v of P�(X) (such vertex exists, as X is finite and P�(X) is then bounded), the
distance between v and P�(X) � B1 is

√
3 > 2√

3
. Then, v does not belong to

P�(X) � B1 ⊕ B 2√
3
.

In particular, the up-sampling strategy proposed in the 2D case is useless in
3D. Indeed, in 2D this up-sampling allowed us to tackle connectedness issues in
P�(X) � B1, whereas in 3D connectedness issues occur in the complement part
P�(X) \ (P�(X) � B1), and the size of this residue is not impacted by increasing
the resolution of the Cartesian grid.

6 Links Between Regularity and Quasi-r-Regularity: The
Marching Squares/Cubes Polygonal Model

6.1 2D Case

The above cubic polygonization is the model implicitly considered when applying
a pointwise rigid motion with the backward transformation model, and with the
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nearest neighbor digitization operator D (Eq. (2)). This trivial polygonization is
directly mapped on the pixel structure of the image, leading to poor modeling
of the shape of the underlying continuous set.

There exist numerous ways of polygonizing a digital set. Here, we investigate
the marching squares (MS) model, which is probably the simplest polygonization,
except from the cubic one. In our case, the considered images are binary and
regular. Then, the MS polygonization is the same as the cubic polygonization,
except in the 2 × 2 configurations (x, y) + {0, 1}2 where one point (for instance
(x, y)) belongs to X (resp. X) while the other three belong to X (resp. X). In that
case, the edge of the MS polygon, noted P♦(X), associated to X is a segment
between the points (x, y+ 1

2 ), (x+ 1
2 , y) (whereas the cubic polygon P�(X) would

locally have edges/segments between the points (x, y + 1
2 ), (x + 1

2 , y + 1
2 ) and

(x + 1
2 , y + 1

2 ), (x + 1
2 , y)).

In the case of a regular object X ⊂ Z
2, the MS polygonization can be formal-

ized as follows. We have X = S⊕{0, 1}2, where S = {(x, y) ∈ X | (x, y)+{0, 1}2 ⊂
X}. By setting S′ = (12 , 1

2 ) + S, this rewrites as X =
⋃

(x,y)∈S′(x, y) + {− 1
2 , 1

2}2.
In other words, S′ is the set of barycenters of the 2 × 2 square subsets of points
forming X. Let C be the octagon centered on (0, 0), formed by the two edges
[(− 1

2 , 1), ( 12 , 1)] and [(12 , 1), (1, 1
2 )], and the other six edges obtained by rotation

of center (0, 0) and angles k.π/2, k = 1, 2, 3, of these two edges. (Note that
the distance between (0, 0) and the four edges induced by [(− 1

2 , 1), ( 12 , 1)] (resp.
[(12 , 1), (1, 1

2 )]) is 1 (resp. 3
2
√
2

> 1)). Let G =
⋃

{[p, q] ⊂ R
2 | p, q ∈ S′ ∧ 0 <

‖p− q‖2 ≤
√

2}. In other words, G is the set of the continuous straight segments
linking the points of S′ that are either 4- or 8-adjacent in the grid Z

2 + (12 , 1
2 ).

Property 4. Let X be a simply connected set. If X is regular, then P♦(X) = G⊕C

Despite its simplicity, this MS polygonization model is sufficient for linking
the notions of regularity and quasi-r-regularity.

Proposition 4. Let X ⊂ Z
2 be a simply connected set. If X is regular, then

P♦(X) ⊂ R
2 is quasi-1-regular with margin

√
2 − 1.

Proof. We show the non-vacuity and connectedness of P♦(X) � B1 and the fact
that P♦(X) ⊆ P♦(X) � B1 ⊕ B√

2; the same reasoning holds for P♦(X). We have
B1 ⊂ C. Then, it leads to S′ ⊂ G ⊆ G⊕C �B1 = P♦(X)�B1. The non-vacuity
of P♦(X) � B1 derives from that of S′ and S. From the definition of regularity,
it is plain that G is a connected subset of R2. Since C is convex, G ⊕ C is also
a connected subset of R

2. But as B1 is convex and B1 ⊂ C, G ⊕ C � B1 =
P♦(X) � B1 is also connected in R

2. We have C ⊂ B√
2, then G⊕C ⊆ G⊕B√

2.
But we also have G ⊆ P♦(X)�B1, then G⊕B√

2 ⊆ P♦(X)�B1 ⊕B√
2. It follows

that P♦(X) = G ⊕ C ⊆ P♦(X) � B1 ⊕ B√
2. �

6.2 3D Case

Similarly to the case of the cubic polyhedrization, we observe that the stan-
dard marching cubes (MC) method [12], namely the 3D version of the marching
squares, also fails to generate a quasi-r-regular polyhedron from a regular set.
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Property 5. Let X ⊂ Z
3 be a simply connected, regular set. Let P♦(X) be the

polyhedron generated from X by MC polyhedrization. Then P♦(X) is never quasi-
1-regular with margin 2√

3
− 1.

To prove this property, it is sufficient to observe that there exists a vertex v
on a convex part of P♦(X) (such vertex exists, as X is finite and P♦(X) is then
bounded), such that the distance between v and P♦(X) � B1 is

√
6
2 > 2√

3
. Thus,

v does not belong to P♦(X) � B1 ⊕ B 2√
3
.

7 Conclusion

In this article, we observed that the notion of quasi-r-regularity allows one to
define polygons/polyhedra that preserve their topology under digitization in Z

n

for n = 2, 3 (this property is no longer valid in Z
n, n ≥ 4). As a consequence,

building a quasi-r-regular polygon/polyhedron from a digital set in Z
2 or Z

3

for handling topology-preserving rigid motions is relevant. In this context, we
established that two simple polygonization models (cubic model and marching
squares) can link the notions of regularity and quasi-r-regularity in Z

2. However,
in 3D, the corresponding models fail to generate quasi-r-regular polyhedra in R

3.
Our further works will consist of investigating other kinds of polyhedrization
devoted to 3D regular images.
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