
Digital Two-Dimensional Bijective
Reflection and Associated Rotation

Eric Andres1(B), Mousumi Dutt2, Arindam Biswas3,
Gaelle Largeteau-Skapin1, and Rita Zrour1

1 University of Poitiers, Laboratory XLIM, ASALI, UMR CNRS 7252, BP 30179,
86962 Futuroscope Chasseneuil, France

eric.andres@univ-poitiers.fr
2 Department of Computer Science and Engineering,

St. Thomas’ College of Engineering and Technology, Kolkata, India
duttmousumi@gmail.com

3 Department of Information Technology,
Indian of Engineering Science and Technology, Shibpur, Howrah, India

barindam@gmail.com

Abstract. In this paper, a new bijective reflection algorithm in two
dimensions is proposed along with an associated rotation. The reflection
line is defined by an arbitrary Euclidean point and a straight line passing
through this point. The reflection line is digitized and the 2D space is
paved by digital perpendicular (to the reflection line) straight lines. For
each perpendicular line, integer points are reflected by central symmetry
with respect to the reflection line. Two consecutive digital reflections are
combined to define a digital bijective rotation about arbitrary center, i.e.
bijective digital rigid motion.
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1 Introduction

Reflection transformation is one of the most basic linear transforms [1]. There
are however surprisingly few works that deal with such transforms in the digital
world, although they are the key to defining n-dimensional rotations [2]. Digital
rotations have many applications such as template matching [3], object tracking
[4], etc.

The problem is that digital transforms on square grid are usually not bijec-
tive. The goal of this paper is to propose a digital bijective reflection on a two-
dimensional image and to use this reflection to propose a digital bijective rotation
algorithm that works for an arbitrary rotation center (i.e. bijective digital rigid
motion). The main motivation behind this work in n-dimensional bijective dig-
ital rotation [2]. Classical methods based on shear matrices proved somewhat
difficult to extend to higher dimensions so the idea was to explore digital reflec-
tions.
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The theoretical discussion on the subject of digital rigid motions is presented
in [5]. While the reflection transform in the digital world has not been stud-
ied much, digital rotations and more precisely bijective digital rotations has
been a point of interest of the digital community for some years now [6,7]. In
[8] a discretized rotation is defined as the composition of a Euclidean rotation
with rounding operations. An incremental approach to discretized rotations is
presented in [9]. A link between Gaussian integers and the bijective digital rota-
tion is proposed in [10]. In [11], bijective rigid motion in 2D Cartesian grid
are discussed. Other mentionable work is the characterization of some bijective
rotations in 3D space [12]. The bijective rotation has also been studied on the
hexagonal grid [13,14] and triangular grid [15].

A continuous tranform applied to a digital image is not, in general, bijec-
tive, neither injective nor surjective for that matter, even for an apparently very
simple transform such as the reflection transform (see Fig. 1). Our idea is to dig-
itize the Euclidean reflection straight line as naive digital lines (i.e. 8-connected
digital lines) and to partition the two-dimensional space into naive digital lines
that are perpendicular to the reflection line. A central symmetry is performed on
the points of each Perpendicular Digital Straight Line (PDSL) according to the
Digital Reflection Straight Line (DRSL). This is always possible because we can
compute the exact pixel to pixel correspondance on each side of the DRSL for
such naive digital lines. The main problem comes from the fact that the digital
reflection line and a given digital perpendicular line may or may not intersect
and so two different cases have to be considered.

The organization of the paper is as follows: Preliminaries in Sect. 2. Section 3
presents the mathematical foundation of bijective digital reflection. The bijective
digital rotation about an arbitrary center can be determined by applying digital
reflection twice (see Sect. 4). An error criteria based on the distance between
the continuous and the digital rotated points are discussed in Sect. 4.2. The
concluding remarks are stated in Sect. 5.

2 Preliminaries

Let {i, j} denote the canonical basis of the 2-dimensional Euclidean vector space.
Let Z2 be the subset of R2 that consists of all the integer points. A digital (resp.
Euclidean) point is an element of Z2 (resp. R2). Two integer points p = (px, py)
and q = (qx, qy) are said to be 8-connected if |px − qx| � 1 and |py − qy| � 1.

For x ∈ R, �x� is the biggest integer smaller or equal to x and �x� is the
smallest integer greater or equal to x.

A naive digital straight line is defined as all the integer points verifying
−max(|a|,|b|)

2 � ax − by < max(|a|,|b|)
2 , where a

b represents the slope of the Digital
Straight Line (DSL) and ω = max(|a|, |b|) the arithmetical thickness [16]. A
naive DSL is 8-connected such that if you remove any point of the line then it
is not 8-connected anymore [16]. There are no simple points.

A reflection transformation Rθ,(xo,yo) : R2 �→ R
2 reflects (or flips) a continu-

ous point, like in a mirror, on a continuous straight line called the reflection line.
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The reflection line is defined as the line with the vector director v = (sin θ, cos θ)
passing through a point of coordinates (xo, yo) ∈ R

2. The corresponding digital
reflection is denoted Rθ,(xo,yo) : Z2 �→ Z

2. A continuous rotation Rotθ,(xo,yo) of
center (xo, yo) and angle θ can be defined as the composition of two continuous
reflections Rα,(xo,yo) and Rα+ θ

2 ,(xo,yo)
. The angle α is arbitrary.

3 Digital Reflection

3.1 Principle

Let us consider the continuous reflection transform, Rθ,(xo,yo). It is not difficult
to note that if we simply compose the continuous reflection with a digitization
transform (such as for instance D : (x, y) �→ (�x + 1/2� , �y + 1/2�)) then we
have a transform that is, in general, neither injective nor surjective (see the
middle image in Fig. 1).

Original image with
Con nuous Reflec on Line Discre zed Image Reflec on Bijec ve Digital Reflec on

Fig. 1. Reflection transform applied to an image. On the left, the original image. In
the center, the continuous reflection transform composed with a rounding function. On
the right, our proposed bijective digital reflection

To avoid this problem and create a digital bijective reflection transform, a
completely digital framework is proposed here based on the following digital
primitives:

– A naive DSL called digital reflection straight line (DRSL);
– and a partition of the digital space with naive DSLs that are perpendicular to

the digital reflection straight line. These digital lines are called Perpendicular
Digital Straight Lines (PDSL).

The idea of the reflection method is the following. Let us consider a point p
that belongs to a given digital perpendicular straight line Pk (k is a parameter
identifying the PDSL in the partition). The point p may belong to the digital
reflection line (in case there is an intersection) or lie on either side of that line.
Let the digital reflection of p be determined in the following way (see Fig. 2):
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Fig. 2. The image of each point is the mirror image in the perpendicular line according
to the digital reflection straight line. The image of a point numbered i is the opposite
point numbered i. The point numbered 0 is its own image.

– let us first suppose that p lies in the intersection between the PDSL Pk and
the DRSL. Such an intersection does not always exist between the two digital
lines but when it does (in this case point p) then the image of p by the digital
reflection is p;

– Let us now suppose that p does not belong to the intersection between the
PDSL and the DRSL (whether such an intersection exists or not). The point
p is then located on one side of the DRSL: the digital space is split by the
DRSL into three regions, the DRSL and two regions on each side of it. All
the integer points of Pk on each side of the DRSL can formally be ordered
according to the distance to the DRSL with as first point the closest one to
the DRSL. As we will see, there actually is no real ordering needed. Let us
suppose that p is the nth point of the ordered list on its side and an integer
point q is the nth point of the list on the other side of the DRSL. The digital
reflection of p will then be the point q and vice-versa.

Figure 2 shows the two possible cases: on the left, the perpendicular digital
line has an intersection point (the point marked as point 0) with the digital
reflection line, while on the right there is no intersection point. The points marked
by the number i (from 1 to 5) are images of each other. The image of the
point marked 0 is itself. The idea is to create a digital transformation that is
bijective and easily reversible. Let us now, in the next section, present the various
definitions and mathematical details to make this work out.
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3.2 Mathematical Details

Let us consider the continuous reflection L line defined by the point (xo, yo) ∈ R
2

and the direction vector v = (a, b) = (sin θ, cos θ). The analytical equation of the
reflection line is given by: L =

{
(x, y) ∈ R

2 : a(x − xo) − b(y − yo) = 0
}
.

The digital reflection straight line (DRSL) the digitization (as naive DSL) of
L defined as integer points verifying:

DRSL : −max(|a|, |b|)
2

� a(x − xo) − b(y − yo) <
max(|a|, |b|)

2

The perpendicular digital straight lines (PDSL) Pk are naive DSLs defined
as all the integer points (x, y) verifying:

Pk :
(2k − 1)max (|a|, |b|)

2
� b(x − xo) + a(y − yo) <

(2k + 1)max (|a|, |b|)
2

It is easy to see that all the PDSLs are perpendicular to the DRSL and that
the set of PDSLs, as a set of naive digital lines, partitions the two dimensional
digital space.

Let us now suppose for what follows, w.l.o.g, that −π/4 � θ � π/4, then
0 � |a| � b and thus max (|a|, |b|) = b. The DRSL is then defined by −b/2 �
a(x−xo)−b(y−yo) < b/2 and the PDSLs are then defined by Pk : (2k−1)b/2 �
b(x − xo) + a(y − yo) < (2k + 1)b/2.

The method supposes that we are able to formally order the points of a given
perpendicular line that are located on either side of the reflection line. This is
always possible because the PDSLs are naive lines and for an angle verifying
−π/4 � θ � π/4, there is one and only one point per integer ordinate y (For
angles π/4 � θ � 3π/4, we will have, symmetrically, one and only one point per
integer abscissa x in a given PDSL).

More precisely, (2k − 1)b/2 � b(x − xo) + a(y − yo) < (2k + 1)b/2 means
that (2k − 1)/2 + xo − a

b (y − yo) � x < (2k + 1)/2 + xo − a
b (y − yo). Since

2k+1
2 − 2k−1

2 = 1, there is one and only one value x. For a given ordinate y, the
abscissa x in the PDSL Pk is given by the following function:

X (y) =
⌈

(2k − 1)
2

+ xo − (a/b)(y − yo)
⌉

Let us note that for a given integer point p(x, y), it is easy to determine the
PDSL Pk it belongs to: (2k − 1)b/2 � b(x − xo) + a(y − yo) < (2k + 1)b/2 leads
to 2k � 2 b(x−xo)+a(y−yo)

b + 1 < 2k + 2 and thus:

k =
⌊
(x − xo) +

a

b
(y − yo) +

1
2

⌋

The next question that arises is the determination and the localization of
the potential intersection point between the digital reflection line and a given
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(x1,y1)

(x2,y2)

(x1,y1)

(x2,y2)

(x1,y1) is the intersec on point No intersec on point

Fig. 3. The green point represents the intersection point between the continuous reflec-
tion line and the continuous perpendicular line. The orange disks mark the two can-
didate points for the digital intersection. On the left (x1, y1) is the digital intersection
point between the DRSL and the PDSL. On the right there is no digital intersection
point. (Color figure online)

digital perpendicular line. As already mentioned, there may be 0 or 1 digital
intersection points between the DRSL and a given PDSL since both are naive
digital lines. We propose here a simple criterion to determine the existence of
such an intersection point and its localization, if it exists. If the point does not
exist, it will yield the closest point of the PDSL to the DRSL on either side of
the digital reflection line.

Firstly, let us note that the DRSL is the digitization of the continuous reflec-
tion line of equation: a(x − xo) − b(y − yo) = 0 which lies in the middle of
the strip defining the DRSL. In the same way, the continuous straight line of
equation b(x − xo) + a(y − yo) = kb lies in the middle of the strip defining the
perpendicular digital straight line Pk. The intersection point of those two con-
tinuous lines is given by

(
kb2 + xo, abk + yo

)
(since a2 + b2 = 1). It is easy to

understand that the only digital intersection point, if it exists, has an ordinate
value given by either �abk + yo� or �abk + yo�. This is a direct consequence of
the fact that the DRSL is a naive digital line of slope between −1 and 1 and
thus with only one integer point per integer ordinate value. We have therefore a
very simple test to determine the existence and coordinates of the intersection
point (see Fig. 3):

– let us define (x1, y1) = (X (�abk + yo�) , �abk + yo�)
and (x2, y2) = (X (�abk + yo�) , �abk + yo�)

– If (x1, y1) belongs to the DRSL then there is an intersection point, (x1, y1) in
this case. A central symmetry of the PDSL points can be performed around
the ordinate value y1. The digital reflection of a point p (xp, yp) ∈ Pk is
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Algorithm 1. Reflection Transform Rθ,(xo,yo)

Input : (x, y) ∈ Z
2, (xo, yo) ∈ R

2, −π/4 � θ < π/4
Output: (x′, y′) ∈ Z

2

1 k =
⌊
(x − xo) +

a
b
(y − yo) +

1
2

⌋

2 Function X (y) : Z �→ Z : X (y) =
⌈

(2k−1)
2

+ xo − (a/b)(y − yo)
⌉

3 (x1, y1) = (X (�abk + yo�) , �abk + yo�)
4 (x2, y2) = (X (�abk + yo�) , �abk + yo�)
5 If −b/2 � a(x1 − xo) − b(y1 − yo) < b/2 Then
6 (x′, y′) = (X (2y1 − y), 2y1 − y)
7 Elseif −b/2 � a(x2 − xo) − b(y2 − yo) < b/2 Then
8 (x′, y′) = (X (2y2 − y), 2y2 − y)
9 Else (x′, y′) = (X (y1 + y2 − y), y1 + y2 − y)

10 return (x′, y′)

given by (X (2y1 − yp), 2y1 − yp). Let us note here that the central symmetry
around the ordinate y1 does not mean here that there is a central symmetry
around the point (x1, y1) because space partition would not be guaranteed
and thus bijectivity would be lost. The abcissa X (2y1 − yp) is computed so
that the reflected point still belongs to Pk.

– Else, if (x2, y2) belongs to the the DRSL then there is an intersection point
(x2, y2). A central symmetry of the PDSL points can be performed around
the ordinate value y2. The digital reflection of a point p (xp, yp) ∈ Pk is given
by (X (2y2 − yp), 2y2 − yp).

– Otherwise there is no intersection point and (x1, y1) and (x2, y2) are the first
points of the PDSL on each side of the Reflection line. The central symmetry
can be performed around the ordinate value y1+y2

2 . The digital reflection of
a point p (xp, yp) ∈ Pk is given by (X (y1 + y2 − yp), y1 + y2 − yp).

The important point here is that, since there is only one point per ordinate
y, a central symmetry on the ordinate leads directly to the reflection point.
Algorithm 1 presents the digital reflection transform method.

3.3 Bijectivity of the Digital Reflection Transform

Algorithm 1 provides a digital reflection method for an integer point. It is not
very difficult to see that this defines a bijective digital reflection transform. Let
us briefly summarizes the arguments for this:

– The computation of the value k in line 1 of Algorithm1 yields the same value
for any point of a given PDSL (and only for those).

– Line 6, 8 and 9 ensure that the image of an integer point of a given PDSL Pk

is an integer point belonging to Pk. Indeed the ordinate values 2y1−y, 2y2−y
and y1 + y2 − y are integers if y1, y2 and y are integers and (X (y), y) is, by
construction, a point of Pk if y is an integer.
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– The reflection of the reflection of an integer point (x, y) ∈ Pk is the integer
point (x, y). Let us consider (x, y) �→ (X (y′), y′) �→ (X (y′′), y′′) where y′ =
2y1−y, y′ = 2y2−y or y′ = y1+y2−y. Let us note first that (x, y) = (X (y), y).
For all three cases, we have respectively y′′ = 2y1−y′ = 2y−1−(2y1−y) = y,
y′′ = 2y2 − y′ = 2y2 − (2y2 − y) = y and y′′ = y1 + y2 − y′ = y1 + y2 − (y1 +
y2 − y) = y which proves the point.

4 Reflection Based Rotation

As mentioned in the preliminaries, a continuous rotation transform Rotθ,(xo,yo)

of center (xo, yo) and angle θ can be defined as the composition of two reflections
based on two reflection lines passing through (xo, yo) with an angle θ/2 between
the two lines. In the same way, we define the digital rotation by:

Rotθ,(xo,yo)(x, y) =
(
Rα+ θ

2 ,(xo,yo)
◦ Rα,(xo,yo)

)
(x, y)

Compared to previous digital rotations methods [6,9,13,17], there is an extra
parameter that comes into play: the angle α. Each value of α defines the exact
same continuous rotation although not the same digital rotation. Let us note as
well that, since the digital reflection transform is bijective, the digital rotation
based on the reflection transforms will be bijective as well. Furthermore, the
inverse transform is easily defined. This last point may seem obvious but it is
not because a digital transform is bijective that the inverse transform is easily
computed.

4.1 Rotation Evaluation Criteria

In order to evaluate the “quality” of such a digital rotation, let us present
some simple error measures [6]. Each grid point has one and only one
image through a bijective digital rotation but that does not mean that the
digital rotation is a good approximation of the continuous one. To mea-
sure how “wrong” we are by choosing the digital rotation over the con-
tinuous one, we are considering two distance criteria that were proposed
in [6]. The considered distance is the Euclidean distance. Let us denote
Rotθ(xo,yo)(p) the continuous rotation of center (xo, yo) and angle θ of a grid
point p ∈ Z

2 and Rotθ,(xo,yo)(p) the digital rotation of center (xo, yo) of a grid
point p. The Maximum Distance quality criteria (MD) consists in computing
maxp∈Z2

(
d(Rotθ,(xo,yo)(p),Rotθ,(xo,yo)(p))

)
. The average distance quality crite-

ria (AD) consists in computing avgp∈Z2

(
d(Rotθ(xo,yo)(p),Rotθ(xo,yo)(p))

)
, where

avgp∈Z2 is the average distance over the grid.
The idea is to measure what error is made by using the digital rotation

instead of the continuous one in terms of (Euclidean) distance to the optimal
position (to the continuously rotated point). Let us finish by noting that for
the best known digital bijective rotations [10,11,17] and for the angles where
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Average Distance criterion Maximal Distance criterion

Fig. 4. Rotations of center (x, y), angle π/8 and α = 0

the digitized rotations are bijective (except for the trivial kπ/2 angles), the
maximum MD values are

√
2
2 ≈ 0.7 and the AD values are ≈ 0.3. Note also that

this method is not bijective for all angles. Other notable methods, that work for
all angles, based on shear matrices [6,7], have MD values of ≈ 1.1 and AD values
of ≈ 0.6.

4.2 Evaluation Analysis

It is difficult to give a completely detailed rotation evaluation here due to lack
of space as there are four different parameters that can influence the outcome of
the evaluation criteria: the center coordinates (xo, yo) and the angles θ and α.

At first, we wanted to have an idea on the effect of the rotation center on
the rotation error measure with the angle α = 0 and θ = π/8. This means
that the first reflection corresponds to a reflection with the continuous reflection
line y = yo, for −1/2 � yo < 1/2 and the digital reflection y = 0. In Fig. 4 we
represented the influence of moving the center on the interval [0, 1/2]2. As can be
seen, the error measures are almost not affected by the shift on the ordinate but
greatly by a shift on the abscissa of the rotation center. This can be explained

Fig. 5. For each rotation angle 0 � θ � π/4, the average error measures of 500 rotations
with random center and respectively α = 0 and random α (with 0 � α � π/4)
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Fig. 6. Rotation of the Lena image by various angles and randomly chosen center.
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by the fact that the shift on the perpendicular lines has a direct influence on
the lateral error that adds up to the global error. Let us note that the surfaces
are similar looking for other couple of angles (α, θ) even though the amplitude
of the error measure may be different.

Next, we wanted to have an idea on the effect of the angle α on the rotation
error measures. Although the angle α always defines the same continuous rota-
tion, it changes the digital rotation. So, for each rotation angle 0 � θ � π/4,
the average error measures for 500 rotations with randomly chosen center and
respectively angle α = 0 and a randomly chosen angle 0 � α � π/4. The result
can be seen in Fig. 5. It can be seen that the angle α has only a minor influence
on the average error but the maximal error is typically significantly increased
for an angle α > 0. It is interesting to note that this is not always so clear: the
digital rotation of angle π/6 and center (0, 0) has an average / maximum error
of (0.6367, 1.3972) for α = 0 and (0.5726, 1.4186) for α = π/6. What can be
noticed as well is that the error ratio between α = 0 and random chosen α is
relatively stable over all the rotation angles. The error measures in general are
significantly higher than those obtained for the shear based method [6] that is
also defined for all angles and centers. The reflection based rotation is however
easier to implement for arbitrary centers: see [6].

5 Conclusion

A novel bijective digital reflection transform in two dimensions has been pro-
posed. The reflection line is defined by an arbitrary Euclidean point and a
straight line passing through this point. A rotation can be defined by the com-
position of two reflections, and so an associated new bijective digital rotation
transform has been proposed. This new bijective digital rotation is defined for all
angles and for all rotation centers, defining a rigid motion transform (see Fig. 6
that illustrates the rotation of an image at various angles and centers). In aver-
age the distance between a continuously and a digitally rotated point is about
0.8 (for a pixel of side 1) which is more than for other known methods. How-
ever, this method is much simpler to implement for arbitrary centers and this
reflection based rotation seems better suited for extensions to higher dimensions
which is not easily done with previous methods. This is the main perspective
for the future: exploring digital reflection based bijective rotations in three and
higher dimensions.
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