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Abstract. The color of a surface structured at the mesoscopic scale differs from
the one of a flat surface of the same material because of the light interreflections
taking place in the concavities of the surface, as well as the shadowing effect.
The color variation depends not only on the surface topology but also on the
spectral reflectance of the material, its matte or glossy finishing, and the angular
distribution of the incident light. For an accurate prediction of the radiance
perceived from each point of the object by an observer or a camera, we must
take into account comprehensively the multiple paths of light which can be
reflected, scattered or absorbed by the material and its surface. In this paper, we
focus on the light reflection component due to the material-air interface, in the
special case of a surface structured with parallel, periodical, specular V-shaped
ridges, illuminated either by collimated light from any direction of the hemi-
sphere, or by diffuse light. Thanks to an analytical model, we compute the
radiance reflected in every direction of the hemisphere by accounting for the
different interreflections, according to the angular reflectance of the panels and
the aperture angle of the cavity. We can then deduce the apparent reflectance of
the cavity when viewed from a large distance.
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1 Introduction

It is well known that the structure of surfaces and materials has a crucial influence on
the way they reflect light, thereby on their appearance. A same material structured in
different ways can yield very different appearance attributes, from bright to dark, glossy
to matte or transparent to opaque.

The influence of the material structure on appearance is mainly related to concept of
light scattering, a concept which covers a wide variety of optical principles according to
the size of the material structures and their periodicity. Regular or periodical structures
whose characteristic size is comparable to the wavelength of light generate interfer-
ences or diffraction, and consequently colorations which are often called structural
colors [1]. These effects have been widely explored in optics for more than one century,
even though pseudo-periodical structures are still an active subject of investigation [see
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for example Ref. 2]. In opposition, irregular structures can generate both coherent and
incoherent light scattering which mainly results in a reorientation of light in space and
depolarization. For these randomly microstructured materials, many models have also
been proposed in the last century to predict their reflection and transmission properties
according to the wavelength, polarization, orientation and position of light. Among the
most famous theories for the light scattering by volumes, we can mention the Kubelka-
Munk model initially introduced for paints [3], the Melamed model for pigments
powders and slurries [4], the radiative transfer theory by Chandrasekhar [5], the multi-
flux theory, the Van de Hulst works for scattering by particles [6], etc. We can also
evocate famous models for the scattering of light by surfaces with a random roughness,
from Beckman and Spizzichino [7] who modelled diffraction by such surfaces, through
Torrance and Sparrow [8] who modelled incoherent reflection by randomly organized
microfacets, to the most advanced models which also take into account the multiple
scattering between different facets [9–11]. All these models form a large prediction
toolbox for many visual attributes (color, translucency and opacity, gloss and matt
aspect), applicable to a wide range of materials according to their optical properties
(refractive indices, scattering and absorption coefficients…) and structural properties
(surface roughness, particle size and concentration, layer thickness…), provided the
material can be considered as homogeneous at the macro- or mesoscopic scale.

However, for many kinds of surfaces or objects, the multiscale structure of the
matter do have to be taken into account in order to obtain accurate optical models and
appearance predictions. Describing scattering at multiple scales is generally done by
combining different models. The classical literature in physics shows various examples.
Mie scattering model is used to describe the light scattering by one particle, and a
radiative transfer model is then used to describe the light transport through a piece of
medium with particles. For stacks of diffusing layers, the Kubelka-Munk model
describes the light scattering at the microscopic scale within each layer and predicts its
reflectance and transmittance, then the Kubelka layering model [12] or more advanced
models describe the flux transfers at the mesoscopic scale between the different layers
with their respective interfaces [13, 14]. For halftone prints, the optical properties of the
paper and the inks can be both modeled by the Kubelka-Munk theory [15], then the
scattering properties of the set of ink dots on top of the paper can be predicted by a
number of models describing the flux transfers between the different inked and non-
inked areas [16–19]. But models are still missing for a volume made of an alternation
of mesoscopic bricks of materials and the 3D flux transfers taking place between them,
as we can find in 3D inkjet printing, and for a surface whose shape has been given a
mesoscopic, possibly periodical structure.

In the latter case on which the present paper is focused, the multiple reflections
between the different areas of the non-flat surface, also called interreflections, give to
the object specific reflection properties according to the illumination conditions that the
models mentioned above cannot render properly. As shown in recent studies dedicated
to ridged Lambertian materials (ridges with V-profile) [20, 21], the presence of peri-
odical ridges modifies the color of the material in comparison to the color of the flat
surface, in different ways according to the ridge aperture and the illumination condi-
tions: the color of the ridge surface is brighter and more saturated than the one of the
flat surface under frontal collimated illumination, but it is darker and less saturated
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under diffuse illumination. Interreflection models taking explicitly into consideration
the microscopic optical properties of the material and the mesoscopic structure of the
surface are capable to predict these color variations, thus also allowing the prediction of
the irradiance repartition at these two scales. The present paper follows this investi-
gation on materials with periodical V-shaped ridges under different illumination con-
ditions, by considering this time a nonscattering material and describing the multiple
specular reflections undergone by each ray between faces of the structure, behaving
like mirrors. As for the model dedicated to Lambertian materials, we adopt a radio-
metric approach, yielding analytical expressions for the angular and bi-hemispherical
reflectance of the structured surface, as a function of the material refractive index and
the ridge aperture a (see Fig. 1).

The paper is structured as follows: we first present the useful concepts for
describing our model, to then introduce the formalization of multiple light reflections
happening in a V-cavity, with specular surfaces as pannels. After this we move on to
the fourth section where we present the results obtained by using the presented model,
and we end with our conclusions.

2 Reflectance

The fraction of light reflected by the structured surface is characterized by the reflec-
tance concept, which is defined for an area of the surface much larger than the width of
the cavities. This concept relies on radiometric quantities related to the amount of
incident and reflected light, recalled below, which can also be used to describe the
multiple reflection process within each cavity.

The light power, or flux, denoted as F, can be regarded as a collection of light rays
propagating from the source to the objects, then from areas of the objects to other areas,
then from the objects to the observer. The distribution of the light flux over a given
surface is described by the concept of irradiance (for incoming light) or exitance (for
outgoing light), defined as the density of received or emitted flux dF per elementary
area dA:

E ¼ dF
dA

ð1Þ

Fig. 1. Structured surface with parallel and periodical V-shaped ridges of aperture angle a.
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Radiance, denoted as L, is defined by the density of light power (or flux) d2F per
elementary geometrical extent d2G:

L ¼ d2F
d2G

ð2Þ

where the geometrical extent defines the flux transfer volume between the two ele-
mentary areas.

Reflectance denotes any ratio of reflected flux to incident flux relative to the same
surface element, defined for a given illumination and observation geometry. In this
paper, reflectance is generically denoted as R. In the special case of air-medium
interfaces, the angular reflectance is denoted as R01(h) for collimated light coming from
medium 0 (in our case, it is air, of refractive index n0 = 1) at the interface with medium
1 (of refractive index n1, which can be either real or complex), with an angle of
incidence h. The term n denotes the relative optical index of the interface, i.e., the ratio
of the refractive indices as follows:

n ¼ n1
n0

ð3Þ

When a light ray with radiance Li is reflected on a flat interface, the reflected
radiance Lr is simply given by:

Lr ¼ R01 hð ÞLi ð4Þ

where h is the angle between the incident radiance and the normal of the interface.

3 Multiple Reflections of a Light Ray in a Specular Cavity

We can notice from Fig. 1 that a light ray entering into one cavity is reflected, possibly
multiple times, in this cavity only. Therefore, we can focus on the reflection of light by
one cavity, and consider that all cavities reflect light in the same way. In this section,
we propose to present the analytical model permitting to accurately predict the amount
and directions of light reflected by the cavity. The model is based on geometrical
optics, with an approach comparable to ray tracing. It describes the path of the light
after the different reflections across the structure, and takes into account the precise
number of bounces that the light undergoes on the panels.

3.1 Geometry of the Cavity

Each cavity is formed by two specular panels of infinite length along the x axis of the
3D Cartesian space (Fig. 2). The width of both panels is set to unity (it could be
equivalently any other value: the width has no impact on the interreflection phe-
nomenon as shown in [18] and on the computation of the specular radiance that we
want to perform here). The angle between the two panels, also called “aperture of the
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cavity”, is denoted as a. Hence, each panel forms a dihedral angle a/2 with the (xOz)-
plane, where the z axis corresponds to the normal of the average structured surface.

The normal of panels 1 and 2 are respectively:

N1 ¼
0

cos a=2ð Þ
sin a=2ð Þ

0
@

1
A and N2 ¼

0
� cos a=2ð Þ
sin a=2ð Þ

0
@

1
A ð5Þ

The incident light ray is characterized by unit radiance, and a unit vector e with
spherical coordinates (h, u) represented in Fig. 2. In this Cartesian coordinate system,
the vector e is given by:

e ¼
sin h sinu
sin h cosu

cos h

0
@

1
A ð6Þ

3.2 Multiple Reflections in a Cavity

Once a light ray enters into a cavity, it may undergo one or several successive
reflections on the panels. After each reflection, the direction of the ray is modified
according to Snell’s laws. However, in geometrical optics, it is classical to represent the
image of the ray reflected by a mirror which is aligned with the incident ray, as shown
on the left of Fig. 3 through the example of two rays. By using this representation for
the cavity, we can draw a straight line aligned with the incident ray, crossing the
successive images of the panels: after a reflection on panel 1, the ray reaches the image
of panel 2 (which forms an angle a with panel 1), then the image of panel 1 (which also
forms an angle a with the image of panel 2, and so on).

The number of reflections depends on both orientation and position of the ray. This
is visible in Fig. 3 where the two rays are parallel (thus characterized by the same

Fig. 2. 3D geometry of one cavity, and vector e representing the direction of illumination.
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vector e) and strike panel 2 in different positions: one ray (represented in red) under-
goes 4 reflections, whereas the other ray undergoes 3 reflections. The ray light paths in
broken straight lines are featured on the right of the figure, in a projection onto the (y0z)
plane of the 3D scene represented on the left of the figure. In this plane, the projection
of vector e, denoted as e?, is:

e? ¼ sin h0

cos h0

� �

with

h0 ¼ arctan tan h cosuð Þ ð7Þ

3.3 Number of Reflections

The number of reflections according to the orientation and position of the ray is
computed according to the following geometrical considerations, in the (yOz) plane.

The orientation of the ray is denoted by the angle h0 given by Eq. (7). Its position is
described by the point P where the ray meets the line (AB) which joins the extremities
of the panels in the (yOz) plane, drawn in Fig. 4. This point P has the coordinates

Fig. 3. Left: 3D representation of two parallel light rays oriented according to a same vector
e striking the cavity in different positions on panel 2. Right: 2D representation of the two same
light rays projected onto the (yOz) vertical plane. The light path can be represented by a straight
line meeting the successive images of the panels from each other. The projection of real light
paths in broken straight lines is also represented on the figure (left).
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P ¼ yP; cos a=2ð Þð Þ. The ray meets the unit circle centered in point O ¼ 0; 0ð Þ in two
points: first in point G ¼ sin bG; cos bGð Þ, then in point H ¼ sin bH ; cos bHð Þ.

Figure 4 shows two examples for the same position yP but two different orienta-
tions of the ray. On the left of the figure, the ray strikes first panel 1, on the right of the
figure, it strikes first panel 2. The panel first met is determined by the following
condition: if the meeting point Q ¼ yq; 0

� �
of the ray and the y-axis has a negative

abscissa yq, panel 1 is met first, otherwise, panel 2 is met first. With some geometrical
calculation, we find that abscissa yq is given by

yq ¼ sin bH � bGð Þ
cos bG � cos bH

ð8Þ

where the angles bG and bH are computed as follows.

Since PG
�! ¼ sin bG � yP; cos bG � cos a

2

� �� �
and e? are collinear, we have:

det
sin bG � yP sin h0

cos bG � cos a
2

� �
cos h0

� �
¼ 0 ð9Þ

After some calculation, Eq. (9) can be written

sin bG � h0ð Þ ¼ yP cos h
0 � cos

a
2

� �
sin h0 ð10Þ

Fig. 4. Geometry for the calculation of the number of reflections, for a same position yP of the
ray, and two different orientations.
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and by noticing that bG � h0\p=2, we obtain

bG ¼ h0 þ arcsin yP cos h
0 � cos

a
2

� �
sin h0

h i
ð11Þ

Likewise PH
�!

and e? are collinear, and by following similar reasoning as above
with point H in place of point G, therefore with angle bH in place of bG, we obtain

sin bH � h0ð Þ ¼ yP cos h
0 � cos

a
2

� �
sin h0 ð12Þ

This time, we can notice that bH � h0 [ p=2, therefore we have:

bH ¼ h0 þ p� arcsin yP cos h
0 � cos

a
2

� �
sin h0

h i
ð13Þ

Figure 4 illustrates the fact that bH is a reflex angle, i.e., higher than p, when the ray
strikes first panel 1 (yq\0), and a salient angle, i.e., lower than p, when it strikes first
panel 2 (yq [ 0). We may prefer using the angle cH , obtuse in any case, defined as:

cH ¼ 2p� bH when yq\0
bH when yq [ 0

	
ð14Þ

Finally, the number of reflections occurring after the first reflection of the first panel
met is the number of times angle cH � a=2 contains a. Hence, the total number of
reflections is given by

m ¼ floor
cH
a

� 1
2


 �
þ 1 ð15Þ

where symbol floor[.] gives the integral part of the number in argument.

3.4 Radiance Attenuation for One Ray

Now that the number of light reflections has been determined, we can express the global
attenuation undergone by the radiance, by multiplying the successive Fresnel reflec-
tances R12 hið Þ corresponding to the different reflections. For each reflection, we need to
compute the local incidence angle hi. This local incidence angle can be easily obtained
through the dot product between vector e, which describes the direction of the ray, and
the normal of the panel, or image of panel, on which the considered reflection occurs.

The panels have the normal vectors N1 and N2 given by Eq. (5). The local incident
angle for the first reflection depends on whether the ray first meets panel 1 or panel 2,
therefore on the sign of the parameter yq defined by Eq. (8):

hi ¼ arccos e � N1ð Þ if yq\0
arccos e � N2ð Þ if yq [ 0

	
ð16Þ

where the symbol “�” denotes the dot product
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The following reflections, if any, occur on images of panels whose normal vector

denoted as N jð Þ
1 or N jð Þ

2 if the first reflection occurs on panel 1, respectively on panel 2.
These normal vectors, for j ¼ 2 to the number of reflections m given by Eq. (15), are
defined as

N jð Þ
1 ¼

0
cos a=2þ j� 1ð Það Þ
sin a=2þ j� 1ð Það Þ

0
@

1
A and N jð Þ

2 ¼
0

� cos a=2þ j� 1ð Það Þ
sin a=2þ j� 1ð Það Þ

0
@

1
A ð17Þ

and the local incident angle is given by

h jð Þ
i ¼

arccos e � N jð Þ
1

� �
if yq\0

arccos e � N jð Þ
2

� �
if yq [ 0

8<
: ð18Þ

Finally, the global attenuation of the radiance according to its position yP between
� sin a=2ð Þ and sin a=2ð Þ and its orientation h;uð Þ, is given by the reflectance:

R h;u; yPð Þ ¼
Ym
j¼1

R01 h jð Þ
i

h i
ð19Þ

where h 1ð Þ
i denotes the local angle hi for the first reflection given by Eq. (16).

Notice that according to the Helmholtz reciprocity principle, a ray following the
same path within the cavity but in opposite direction would undergo exactly the same
attenuation. Hence, R h;u; yPð Þ can denote the attenuation for the ray coming or exiting
the cavity at the angle h;uð Þ through the position yP.

4 Reflectance of the Structured Surface

From the reflectance attached to each incident ray within the cavity, we can derive the
reflectance of the structured surface for a Lambertian illumination. It can be a
hemispherical-directional reflectance, also called angular reflectance, being a function of
the observation direction.Another interesting type is the bi-hemispherical reflectance. It is
also possible to compute directional-hemispherical reflectance, equivalent to the hemi-
spherical directional reflectance in this case, thanks to the reversibility of light principle.

4.1 Angular Reflectance

Let us consider that the cavity is illuminated over a band of width Dx along the x axis,
perpendicular to the cavity, i.e. illuminated along the y axis, by collimated light from a
direction h;uð Þ. The illumination is uniform, i.e., same radiance Li arrives in each point
of the band, which receives a uniform irradiance

Ei ¼ Li cos hiDxi ð20Þ
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where Dxi denotes the small solid angle of illumination. Since the illuminated area is
2 sin a=2ð ÞDx, the incident flux on the band is Fi ¼ 2 sin a=2ð ÞDxEi. On each elemen-
tary area within the band, centered around the position and of size DxdyP, the ele-
mentary flux is dFi ¼ DxdyPEi.

The different elementary fluxes are reflected in various directions according to the
panel that each one meets first and the number of reflections. By collecting the whole
reflected flux, in practice with a measurement device equipped with an integrating
sphere, the captured flux FR is given by

Fr ¼ DxEi

Z sin a=2ð Þ

yp¼� sin a=2ð Þ
R h;u; yð ÞdyP ð21Þ

The directional-hemispherical reflectance of the band, and by extension to the whole
structured surface, associated with this orientation of the incident light, is therefore:

R h;uð Þ ¼ Fr

Fi
¼ 1

2 sin a=2ð Þ
Z sin a=2ð Þ

yp¼� sin a=2ð Þ
R h;u; yð ÞdyP ð22Þ

Again, according to the Helmholtz reciprocity principle, the angular function
R h;uð Þ given by Eq. (22) also corresponds to the hemispherical-directional reflectance
function of the structured surface when it is illuminated by Lambertian light over the
hemisphere (same radiance Li comes from every direction) and observed in the
direction h;uð Þ.

Notice that since the specular reflections on the panels do not modify the geo-
metrical extent of the rays, the radiance Lr perceived in one direction hr;urð Þ is:

Lr hr;urð Þ ¼ R hr;urð ÞLi ð23Þ

It is possible to display the reflectance given by Eq. (22) according to the obser-
vation direction on a 2D map thanks to the Lambert azimuthal equal area projection. To
every direction h;uð Þ corresponds a point u; vð Þ within a disk of radius

ffiffiffi
2

p
whose

coordinates are given by:

u ¼ 2 sin h=2ð Þ cosu
v ¼ 2 sin h=2ð Þ sinu

(
ð24Þ

The advantage of this transformation is that it conserves the areas by mapping a
portion of the hemisphere of a given area, into a portion of the disk with same area.

In Fig. 5, we present the results given by Eq. (22) for two different materials, for
aperture angle values of 45, 60, 90, 120, 150° and 180°. One material is dielectric, with
a refraction index of 1.5. Its spectral reflectances are converted first in CIE 1931 XYZ
tristimulus values then into L*a*b* color values, for a better visualization. The other
one is made of copper, with tabulated values for the refractive index in the visible
spectrum of light (400–700 nm), the spectral reflectances being converted in CIE 1931
XYZ tristimulus values, and then into sRGB color values.
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For the dielectric material, we can see that the reflectance is globally very weak,
except at high incidence angles (periphery of the graphs) when the cavity aperture
angle is large. This is coherent with the angular variations of the Fresnel formulae. The
highest angular reflectances peaks are located near the zones where the azimuthal angle
u ¼ p=2, i.e. when the incident plane contains the x-axis. We can also see that the

Dielectric material (n = 1.5)
α = 45° α =60° α =90°

α =120° α =150° α =180°

Copper under a LED lighting (visible spectrum from 400 to 700 nm)
α = 45° α = 60° α = 90°

α = 120° α = 150° α = 180°

Fig. 5. Maps of hemispherical-directional reflectance (in %) for cavities of dielectric material,
and color maps for cavities of copper, obtained with different aperture angles of cavities,
represented with the Lambert azimuthal equal area projection.
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radiance gradients have some discontinuities, which correspond to the directions at
which the number of reflections within the cavity is incremented by one. For example,
on the map attached to an aperture of 120°, a central area is lighter than the rest of the
graph: it corresponds to rays undergoing one reflection, whereas in the rest of the
graphs, rays undergo two reflections.

It is even more visible in the case of the copper. This material being more reflective,
the reflected light appears more sliced into specific areas. It is also important to notice
the saturation of the color increasing when the aperture angle decreases, as also shown
in the case of diffusing surfaces in [20].

4.2 Bi-Hemispherical Reflectance

Now, we want to investigate the bi-hemispherical reflectance of the V-cavity and the
influence of the surface structure (aperture angle a).

The bi-hemispherical reflectance corresponds to a uniform illumination over the
hemisphere (Lambertian illumination, characterized by a constant radiance Li from
every direction), and a capture of the whole reflected light over the hemisphere. It is
obtained by integrating over the hemisphere the angular reflectance studied previously,
as follows.

The irradiance on the structured surface is related to the radiance Li by:

Ei ¼
Zp=2
h¼0

Z2p
u¼0

Li cos h sin hdhdu¼ pLi ð25Þ

and the incident flux on a band of the 2 sin a=2ð ÞDx area cavity is:

Fi ¼ 2 sin a=2ð ÞDxEi ð26Þ

The exitance is the sum of the reflected radiances expressed by Eq. (23):

M ¼
Zp=2

hr¼0

Z2p
ur¼0

Lr hr;urð Þ cos hr sin hrdhrdur ð27Þ

where Lr ¼ R hr;urð ÞLi is the radiance reflected by the cavity according to the
reflectance defined by Eq. (22).

Finally, the bi-hemispherical reflectance is given by:

R ¼ M
Ei

¼ 1
pLi

Zp=2
hr¼0

Z2p
ur¼0

Lr hr;urð Þ cos hr sin hrdhrdur ð28Þ

which yields, according to Eqs. (20) and (21),
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R ¼ 1
2p sin a=2ð Þ

Zp=2
hr¼0

Z2p
ur¼0

Zsin a=2ð Þ

yp¼� sin a=2ð Þ

R hr;ur; yð ÞdyP cos hr sin hrdhrdur ð29Þ

Using Eq. (29), we computed the bi-hemispherical reflectances for various aperture
angles of the specular V-cavity, for the dielectric material previously studied, and for a
cavity of silver at 550 nm (n = 0.1249 + i3.3391). The values are presented in Table 1.

The bi-hemispherical values in Table 1 confirm the tendencies drawn by the
angular reflectance maps. As the aperture angle gets smaller, the reflectance is lower
and the structured surface has a darker appearance, which is due to the increase of the
number of light reflections in the cavities, each reflection introducing a radiance
attenuation. It is illustrated by Table 2, where we computed, in the case of a cavity of
silver at 550 nm (n = 0.1249 + i3.3391) with an aperture of 45°, the bi-hemispherical
reflectance by taking into account only 1 light reflections, then adding the paths of the
light where a second reflection happens, then a third one, up to the maximum number
of 4 light reflections possible in this structure.

We observe from these results that if we take into account only one or two light
reflections, as it is often done in light scattering models by rough metallic surfaces, we
underestimate the reflectance. The error is sensible in the case of media with high
refractive index, like metals. It is also visible through Fig. 6, where the angular
reflectance for silver at 550 nm with an aperture of 45° is represented in the cases
where we only consider one reflection of the light, or all the possible reflections.

Table 1. Bi-hemispherical reflectances for various cavity aperture angles.

Aperture angle 45° 60° 90° 120° 150° 180°

Silver 0.87 0.91 0.94 0.95 0.96 0.97
Dielectric (n = 1.5) 0.01 0.02 0.04 0.05 0.08 0.09

Table 2. Bi-hemispherical reflectance of a 45° V-cavity made of silver at 550 nm

Maximal number of light reflections Bi-hemispherical reflectance

1 0.14
2 0.40
3 0.70
4 0.97
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In order to obtain a more precise prediction of the appearance, especially in the case of
a small aperture angle in the concavities of the surface topography, it is necessary to
compute it with a sufficient number of light reflections, as also shown recently in the
domain of computer graphics [10, 11].

5 Conclusions

In this paper, we analyzed the interreflections happening in a structured surface made of
parallel, specular V-cavities under a Lambertian illumination. We proposed a model
taking into account the exact number of light reflections occurring in the structures, in
order to accurately predict the reflectance according to the observation angle. We saw
that the material and the angle of the cavity have a strong impact on the interreflections
and the reflectance of the concave surfaces, in particular because of the number of light
reflections. We also showed that it is crucial to model correctly the number of light
reflections happening in surfaces presenting concavities with small aperture angle, as it
has a great influence on the final visual appearance. This constitutes an extension for
the modelization of the light being reflected by complex surfaces, to better predict the
visual appearance of given surfaces. It could be combined in the future with a model
predicting the interreflections in similar cavities made of a Lambertian material, in
order to predict the appearance of a diffusing material presenting a structured interface
with air.

Fig. 6. Maps of angular reflectance for a 45° V-cavity made of silver, at 550 nm
(n = 0.1249 + i3.3391), represented with the Lambert azimuthal equal area projection, where
only one reflection (left) and all the possible reflections (right) of rays in the cavity are rendered.
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