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Abstract. Images affected by haze usually present faded colours and
loss of contrast, hindering the precision of methods devised for clear
images. For this reason, image dehazing is a crucial pre-processing step
for applications such as self-driving vehicles or tracking. Some of the
most successful dehazing methods in the literature do not follow any
physical model and are just based on either image enhancement or image
fusion. In this paper, we present a procedure to allow these methods to
accomplish the Koschmieder physical model, i.e., to force them to have
a unique transmission for all the channels, instead of the per-channel
transmission they obtain. Our method is based on coupling the results
obtained for each of the three colour channels. It improves the results
of the original methods both quantitatively using image metrics, and
subjectively via a psychophysical test. It especially helps in terms of
avoiding over-saturation and reducing colour artefacts, which are the
most common complications faced by image dehazing methods.

Keywords: Image dehazing · Colour image processing ·
Image post-processing

1 Introduction

Images acquired in outdoor scenarios often suffer from the effects of atmospheric
phenomena such as fog or haze. The main characteristic of these phenomena is
light scatter. The scattering effect distorts contrast and colour in the image,
decreasing the visibility of content in the scene and reducing the visual quality.
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Fig. 1. Recurring problems of non-physical based dehazing methods. From left to right:
original image, the solutions of the methods of Galdran et al. [11] (top), and Choi
et al. [6] (bottom), and the result of the post-processing introduced in this paper. We
can clearly see the artefacts in the result of Galdran et al. and the over-saturation in
the result of Choi et al. Both problems are solved by the post-processing approach
proposed in this paper.

Koschmieder [15] defined a model of how the atmospheric phenomena affects
the output images. The model depends on two parameters: a depth-dependent
transmission (t), and the colour of the airlight (A). Mathematically, the model
is written as

Ix,· = tx · Jx,· + (1 − tx) · A. (1)

Here x is a particular image pixel, Jx,· is the 1-by-3 vector of the R,G,B values
at pixel x of the clear image (i.e., how the image would look without atmospheric
scatter) and Ix,· is the 1-by-3 vector of the R,G,B values at pixel x of the image
presenting the scattering effect. We remark that the transmission t only depends
on the depth of the image, and therefore it is supposed to be equal for the three
colour channels.

Image dehazing methods -i.e. methods that given a hazy image I, obtain
a clear image J - are becoming crucial for computer vision, because there are
several methods -for recognition and classification among other tasks- that are
supposed to work in the wild. Some examples are those used for surveillance
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through CCTV cameras, tracking, or the self-driving of vehicles and drones.
However, the vast majority of these methods are devised for clear images, and
tend to fail under adverse weather conditions. Image dehazing methods can be
roughly divided in two categories: (i) physical-based methods that estimate the
transmission of the image and solve for the clear image by inverting Eq. 1 [3,
4,7,13,18,21,23,24,27], and (ii) image processing methods that directly process
the hazy image so as to obtain a dehazed image but without considering the
previous equation (from now on, we will call these methods non-physical dehazing
methods) [2,6,10–12,25,26].

In this paper we focus on non-physical dehazing methods. This type of meth-
ods are able to obtain state-of-the-art results, but may sometimes present over-
saturated colours and colour artefacts mostly because a different transmission is
obtained for each colour channel. An example of the problems just mentioned is
shown in Fig. 1 where, from left to right, we show two original images, the results
from the methods of Galdran et al. [11] (top) and Choi et al. [6] (bottom), and
the results obtained by using the approach of this paper.

There are very few proven methods that specifically look at reducing the
colour artefacts that appear in dehazed images. Matlin and Milanfar [17] pro-
posed an iterative regression method to simultaneously perform denoising and
dehazing. Li et al. [16] decomposed the image into high and low frequencies,
performing the dehazing only in the low frequencies, thus avoiding blocking
artifacts. Chen et al. [5] applied both a smoothing filter for the refinement of
the transmission and an energy minimisation in the recovery phase to avoid
the appearance of gradients in the output image that were not presented in the
original image.

In this paper we present a post-processing model for non-physical dehazing
methods that aims at providing an output image that accomplishes the physical
constraints given by Eq. 1. Our method is based on a channel-coupling approach,
and it is devised to obtain a single transmission for all the different colour chan-
nels. Furthermore, our method also improves on the estimation of the airlight
colour.

2 Imposing a Physically Plausible Dehazing

In this section, we define our approach for the post-processing of non-physical
dehazing methods. Our main goal is, given an original hazy image and the solu-
tion of a non-physical dehazing method, to obtain a single transmission and
an airlight that minimise the error of Eq. 1. We can write this minimisation in
matrix form as:

{Aour , tour} = argminA∗,t∗‖(1 − t∗) · A∗ − I + T ∗ � J‖. (2)

where, 1 is a N -by-1 vector that has a value of 1 in every entry, t∗ is a N -by-1
vector that represents the transmission, A∗ is a 1-by-3 vector that provides us
with the airlight, I, J are N -by-3 matrices representing the input image, and



236 J. Vazquez-Corral et al.

the non-physical dehazing solution, N is the number of pixels, T ∗ is a N -by-
3 matrix consisting on the replication of t∗ three times, and � represents the
element-wise multiplication.

It is clear that to solve for this equation, we need to select an input guessing
for either Aour or tour . This is not a problem, since a standard hypothesis
used in many image dehazing works is to select Aour = [1, 1, 1]. Equation 2 also
teaches us that we should perform the minimisation iteratively in two different
dimensions. When we look for tour we should perform the minimisation for each
pixel x of the image over the three colour channels, while when we look for Aour

we should perform the minimisation for each colour channel c over all the pixels.
We now detail our iterative minimisation. Let us start by having I, J , and

the initial guessing for Aour . In this case we can solve for the value of tour at
each pixel value x using a least squares minimisation:

∀(x) tourx = argmint∗
x
‖(Ix,· − Aour ) − t∗x · (Jx,· − Aour )‖2. (3)

As stated in the introduction, Jx,· and Ix,· are the 1-by-3 colour vectors at pixel
x. This least squares minimisation has the following solution

∀(x) tourx = (Ix,· −Aour )(Jx,· −Aour )T ((Jx,· −Aour )(Jx,· −Aour )T )−1. (4)

where T denotes the transpose of the vector.
Once we have found the transmission value tour , we can refine the value of

Aour via a least squares approach. In this case, as stated above, we perform
the least squares minimisation over the pixels of the image for each of the three
colour channels. Mathematically,

∀(c) Aour
c = argminA∗

c
‖(1 − tour ) · A∗

c − I·,c + tour � J·,c‖2. (5)

In this case J·,c and I·,c are N -by-1 vectors representing each different colour
channel of the images -i.e. c = {R,G,B}-, N is the number of pixels, and 1 is
also a N -by-1 vector that has 1 at every entry.

This minimisation leads to

∀(c) Aour
c = ((1 − tour )T (1 − tour ))−1((1 − tour )T (I·,c − tour � J·,c)) (6)

where T denotes the transpose of the vector.
Once this new Aour is obtained, we can keep the iterative approach going

by further refining the previous tour following again Eq. 3.
Finally, once the desired number of iterations are performed, and given tour ,

Aour , and the original hazy image I, we can obtain our output image Jour by
solving for Eq. 1:

Jour
x,· =

Ix,· − Aour

tourx

+ Aour . (7)

We want the reader to raise attention to the relation of this approach to the
Alternative Least Squares (ALS) method introduced by Finlayson et al. [8]. As
in the ALS method, we are following an iterative procedure for the minimisation
of a norm-based function.
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3 Experiments and Results

This section is divided into three parts. First, we show qualitative results for
our approach when applied to different non-physical dehazing methods. This is
followed by a quantitative analysis of our post-processing. The section ends with
a subjective evaluation using a preference test. In all our results we have allowed
our approach to perform 5 iterations, as we have found experimentally that they
are enough to obtain stable results. We have initialised the iterative approach
by supposing Aour = [1, 1, 1].

3.1 Qualitative Evaluation

In all the following figures, we show on the left the original hazy image, on the
center the result of the selected dehazing method, and on the right the result
obtained by our method.

Figure 2 shows the results for the EVID method [11]. We can see that the
original method is inducing an odd increase of contrast in the nearby objects of
the image, therefore provoking these objects to look unnatural (e.g. the nearby
plants in the top image, and the gravestones in the bottom image). These prob-
lems are clearly alleviated in our results.

Figure 3 shows the results for the FVID method [12]. The biggest problem of
this image dehazing method is the appearance of artefacts (located in the base of

Fig. 2. Results of our post-processing for the EVID method. From left to right: Original
hazy image, result of the EVID method, result after our post-processing.
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Fig. 3. Results of our post-processing for the FVID method. From left to right: Original
hazy image, result of the FVID method, result after our post-processing.

Fig. 4. Results of our post-processing for the DEFADE method. From left to right:
Original hazy image, result of the DEFADE method, result after our post-processing.
(Color figure online)
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Fig. 5. Results of our post-processing for the Wang et al. method. From left to right:
Original hazy image, result of the Wang et al. method, result after our post-processing.
(Color figure online)

the bushes in the top image and in the sky in the bottom image). Also, the top
image is clearly presenting an excessive unnatural contrast. All these problems
are suppressed by our proposed approach.

Figure 4 shows the results for the DEFADE method [6]. This method over-
enhances the colours, as it can be clearly seen in the green of the plants in the
top image, and in the orange hue of the boy’s jacket in the bottom one. Once
again, these problems are solved after applying our proposed post-processing.

Finally, Fig. 5 shows the results for the method of Wang et al. [26]. In this
particular case, images present an unreasonable contrast. This fact provokes the
appearance of unrealistic edges and colours (focus on the green of the grass and
the closer bushes in the top image, and on the wall of the nearby building in
the bottom image). Once again, these problems are mitigated once our method
is applied.

3.2 Quantitative Evaluation

For this subsection, we have selected six standard hazy images that appear in
most of the works dealing with image dehazing. They are shown in Fig. 6. Regard-
ing the non-physical dehazing methods to be evaluated, we have selected the
following five: the FVID [12], the DEFADE [6], the method of Wang et al. [26],
and the use of the DehRet method by [10], considering as Retinex the variational
approach of SCIE [9] and the Multiscale Retinex (MSCR) method. [22].

We have computed two different image quality metrics in order to evaluate our
results: the Naturalness Image Quality Evaluator (NIQE) [20], and the BRISQUE
metric [19]. We have selected these metrics as we do not have access to correspond-
ing ground-truth (fog-free) images. Let us note that in the case there are ground-
truth images available further metrics can also be considered [14].
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Fig. 6. Original images used in both the quantitative evaluation and the preference
test.

NIQE is an error metric that states how natural an image is (the smaller
the number, the higher the naturalness). Table 1 presents the mean and RMS
results for this metric. Our method improves in all the cases except for the FVID
method. In this last case, the mean for the original dehazing method and the
mean for our approach is the same, and the RMS for our approach is slightly
worse than the one for the original dehazing.

BRISQUE is a distortion-based metric that also tries to predict if an image
looks natural based on scene statistics (the smaller the value, the better the
result). Table 2 presents the results for this metric. In this case, our method
outperforms all the others for all the cases.

Table 1. Mean and RMS results for the NIQE measure.

Original method Our approach

Mean RMS Mean RMS

Wang et al. 3.89 4.00 3.45 3.51

Defade 3.36 3.44 3.32 3.41

FVID 3.32 3.36 3.32 3.37

DehRet-MSCR 3.83 3.91 3.46 3.49

DehRet-SRIE 3.00 3.02 2.94 2.95

3.3 Preference Test

We have also performed a preference test with the same set of images used
in the previous subsection. In total, 7 observers completed the experiment. All
observers were tested for normal colour vision. The experiment was conducted
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Table 2. Mean and RMS results for the BRISQUE measure.

Original method Our approach

Mean RMS Mean RMS

Wang et al. 31.58 32.33 22.44 24.30

Defade 21.75 22.22 20.28 20.85

FVID 21.71 23.39 20.91 22.88

DehRet-MSCR 24.81 26.34 22.97 23.97

DehRet-SRIE 25.22 25.94 24.84 25.73

on a NEC SpectraView reference 271 monitor set to ‘sRGB’ mode. The display
was viewed at a distance of approximately 70 cm so that 40 pixels subtended
1◦ of visual angle. Stimuli were generated running MATLAB (MathWorks) with
functions from the Psychtoolbox. The experiment was conducted in a dark room.

Subjects were presented with three images: in the center the original hazy
image, and at each side the result of the original dehazing method and the result
of our post-processing approach. Let us note that the side for these two images
was selected randomly, and therefore varied at each presentation. Subjects were
asked to select the preferred dehazed image. The total number of comparisons
was 30.

Results have been obtained following the Thurstone Case V Law of Com-
parative Judgement. Figure 7 shows the results for the whole set of comparisons
(i.e., considering the 5 original dehazing methods together). We can clearly see
that our method statistically outperforms the original dehazing methods.

Fig. 7. Result of the preference test.
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A more detailed analysis that looks individually at each dehazing method is
presented in Fig. 8. We can clearly see that our method greatly outperforms the
results of the DEFADE, the Wang et al., and the DehRet-MSCR methods. In
the case of the FVID and the DehRet-SRIE methods, our method is statistically
equivalent to the original method. Let us note that these results are well aligned
with those obtained on the previous subsection, as the two methods that are
statistically equivalent to our post-processing were also the two methods for
which our improvement in the metrics was smaller.

The results shown lead us to conclude that our method is very reliable, both
quantitatively and subjectively: It does not output a result that deteriorates from
the original dehazing method result. Also, let us note that we can not hypothesise
which is the best original method, as no direct subjective comparison among
them was performed. However, we can hypothesise that FVID and DehRet-
SRIE are closer to follow the physical model as our method does not present a
significant improvement over them.

Fig. 8. Results of the preference test splited per method.
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4 Conclusions

We have presented an approach to induce a physical behaviour to non-physical
dehazing methods. Our approach is based on an iterative coupling of the colour
channels, which is inspired by the Alternative Least Squares (ALS) method.
Results show that our approach is strikingly promising. As further work, we
will perform larger experiments with more images and subjects, will consider
other evaluation paradigms (e.g. SIFT-based comparison [1]), and will study the
convergence of our iterative scheme.
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