
Improving Generalization Ability
of Deep Neural Networks for Visual

Recognition Tasks

Takayuki Okatani1,2(B), Xing Liu1, and Masanori Suganuma1,2

1 Graduate School of Information Sciences, Tohoku University, Sendai, Japan
okatani@vision.is.tohoku.ac.jp

2 RIKEN Center for AIP, Tokyo, Japan
http://www.vision.is.tohoku.ac.jp

Abstract. This article discusses generalization ability of convolutional
neural networks (CNNs) for visual recognition with special focus on
robustness to image degradation. It has been long since CNNs were
claimed to surpass human vision, for example, in an object recognition
task. However, such claims simply report experimental results that CNNs
perform better than humans on a closed set of testing inputs. In fact,
CNNs can easily fail for images to which noises are added, when they
have not learned the noisy images; this is the case even if humans are
barely affected by the added noises. As a solution to this problem, we
discuss an approach that first restores the clean image from an input
distorted image and then uses it for the target recognition task, where
a CNN trained only on clean images is used. For solutions to the first
step, we show our recent studies of image restoration. There are multiple
different types of image distortion, such as noise, defocus/motion blur,
rain-streaks, raindrops, haze etc. We first introduce our recent study of
architectural design of CNNs for image restoration targeting at a single,
identified type of distortion. We then introduce another study, which pro-
poses to use a single CNN to remove combination of multiple types of
distortion with unknown mixture ratio. Although it achieves only lower
accuracy than the first method in the case of a single, identified type of
distortion, the method will be more useful in practical applications.

Keywords: Visual recognition · Convolutional neural networks ·
Generalization ability

1 Introduction

The emergence of convolutional neural networks has reshaped research in the field
of computer vision in the past seven years. Their employment has brought about
solutions to unsolved problems or contributed to (sometimes significant) improve-
ments in performance (e.g., inference accuracy, computational speed etc.). It was
claimed in the past years thatCNNs can even surpass humanvision in several visual
recognition tasks, in particular, the task of object category classification [7].
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Fig. 1. Material classification from a noisy image. Humans and CNNs choose one of
the ten material categories shown on the right.

Fig. 2. Accuracy of material classification versus the strength of Gaussian noise added
to the input images. Plain indicates a CNN trained only on clean images and Ftn is a
CNN trained on both clean and noisy images.

However, we should be precise about the meaning (or underlying condition) of
such claims. Each of them is made based on experiments that compare CNNs and
humans on a recognition task using a particular dataset. The experimental results
merely indicate that CNNs are better in terms of recognition accuracy than
humans on a closed set of test inputs. In other words, CNNs may correctly classify
inputs that are sampled from the same distribution as the training data they have
learned, but will wrongly classify inputs sampled from a different distribution.
The two distributions usually need to be very close; their difference is called
domain shift, which is known as one of major causes that impede applications
of CNNs to real-world problems.

One such example is shown in Fig. 1. The image shown on the left is a noisy
version of a sample belonging to Flickr Material Databse (FMD) [18], which is
a popular dataset for ten-class material classification task; the ten classes are
shown on the right of the figure. We consider here the material classification
task from noisy input images. The original images of FMDs are noise-free, and
we add Gaussian random noises with a certain strength to them.
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Figure 2 shows the results. It shows performance of various CNN models and
humans for different strengths of additive Gaussian noises. An overall tendency
is that humans and all the CNN models show similar accuracy in the noise-free
case, and they all deteriorate as the noise strength increases. It is, however, seen
that the performance decrease for humans is almost the smallest, while the CNN
trained only on clean (i.e., noise-free) images performs the worst for noisy inputs.
On the other hand, the CNN trained also on noisy images shows comparable
performance to humans. This phenomenon demonstrates the aforementioned
issue with neural networks; they work very well for trained data but can fail
for inputs sampled from a slightly different distribution, even if the difference is
mostly negligible for humans.

In this article, we consider how to cope with the issue with deep learning. We
first discuss how to enable to perform visual recognition from degraded images
such as noisy images considered above.

2 Image Restoration for Robust Visual Recognition

2.1 Visual Recognition Robust to Image Distortion

There are three approaches to visual recognition from distorted (or degraded)
images, as shown in Fig. 3. The first approach, which is conceptually the simplest,
is to train the CNN using not only clean images but noisy images. Then, the
CNN will accurately recognize noisy inputs, as discussed above and shown in
Fig. 2. However, this approach is often impossible to employ, since it requires to
have training data of distorted images (i.e., noisy images in the aforementioned
case), which need to be given labels (i.e., material or object categories), as well
as to perform training on a larger dataset.

The second approach (Fig. 3(c)) is to make the CNN more robust to image
distortion, so that it can correctly recognize distorted images even though it is
trained only on clean images. This may be the most difficult one of the three
approaches. In fact, there is only a few studies pursuing this approach. For exam-
ple, Sun et al. [32] show that a type of activation functions mitigates decrease in
recognition accuracy due to distortion of input images. However, the improve-
ments are limited for real-world applications.

The third approach (Fig. 3(d)), which is the one we discussed in what follows,
is to use another CNN model to restore quality of input images with distortions.
We insert this CNN for image restoration before the CNN for classification (or
other purposes); the first CNN estimate clean version of the input distorted
image, which is fed to the second CNN for classification. We can use the CNN
trained only on clean images for the second CNN. Instead, it is necessary to
train the second CNN, which requires pairs of a distorted image and its clean
version. On the other hand, it is not necessary to give the input distorted images
labels for classification, which is advantageous. Moreover, the cost for creating
the training data for image restoration (i.e., the second CNN) tends to be lower
than the classification task.
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Fig. 3. Three ways to improve robustness of CNNs to image distortion. (a) A CNN
trained only on clean images is vulnerable to distortion in input images. There are three
methods to cope with this issue: (b) inclusion of distorted images in training data; (c)
robustification of the CNN itself; and (d) cascading an image-restoration CNN to the
CNN trained only on clean images.

Now, the problem is how to build a CNN that can perform image restoration
with sufficient accuracy. We wish the first CNN to restore a clean image from
an input distorted image and then the second CNN to correctly classify objects
etc from the restored image. An example is the SEDNet shown in Fig. 2; it is
a cascade of two CNNs (i.e., image restoration + classification) and it achieves
slightly better performance than humans for inputs with large noises.

The problem of image restoration has been studied for a long time. In the
past, researchers mainly tackle the problem by modeling natural images, where
they consider their statistics based on edge statistics [4,16], sparse representation
[1,25] etc. Recently, learning-based methods, particularly those using CNNs [8,
10] have shown better performance than those previous methods for the problems
of denoising [21,24,28,29], deblurring [9,14,20], and super-resolution [2,11,30].

3 Image Restoration for Single Type of Distortions

We first consider the case where input images undergo a single type of distor-
tion. This is a standard setting of image restoration, for which there have been a
vast amount of studies conducted so far. Recent applications of CNNs have con-
tributed to performance improvement. We have developed better architectural
design of networks that can be shared across many tasks of image restoration.
We briefly summarize the study here.

In the study, we pay attention to the effectiveness of paired operations on
various image processing tasks. In [19], evolutionary computation is employed to
search for optimal design of convolutional autoencoders for a few image restora-
tion tasks; network structures repeatedly performing a pair of convolutions with
a large- and small-size kernels perform well for image denoising. In [5], it is shown
that a CNN iteratively performing a pair of up-sampling and down-sampling
contributes to performance improvement for image-superresolution.
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Fig. 4. Structure of the Dual Residual Block (DuRB) (upper left) and five popular
image restoration tasks.

To accommodate such paired operation effectively, we propose a general archi-
tecture named Dual Residual Block (DuRN). A DuRN consists of an initial group
of layers starting from the input layer, followed by an arbitrary number of blocks
called Dual Residual Blocks (DuRBs), and the last group of layers ending at the
output layer. Each DuRB has containers for the paired first and second operations.
Normalization layers (such as batch normalization [6] or instance normalization
[22]) and ReLU [15] layers can be incorporated when it is necessary.

In our experiments, we consider the five types of image distortions and
restoration from them, as shown in Fig. 4. We design DuRBs for each of them;
to be specific, we choose the two operations to be inserted into the containers
T l
1 and T l

2 in the DuRBs. We have designed and used four different implemen-
tations, i.e., DuRB-P, DuRB-U, DuRB-S, and DuRB-US; DuRB-P are used for
noise removal, rain-streak removal and raindrop removal, DuRB-U for motion
blur removal, DuRB-S for raindrop removal, and DuRB-US for haze removal.
For [T l

1, T
l
2], we specify [conv., conv.] for DuRB-P, [up-sampling + conv., down-

sampling (by conv. with stride = 2)] for DuRP-U, [conv., channel-wise attention
for DuRP-S, and [up-sampling + conv., channel-wise attention + down-sampling]
for DuRB-US, respectively. We will show experimental results for noise removal,
rain-streak removal, and motion-blur removal in what follows.

3.1 Noise Removal

We use DuRN-P for this task. Based on the findings in a study of neural archi-
tectural search [19], we choose convolution with large- and small-size receptive
fields for T1 and T2, respectively. We also choose the kernel size and dilation rate
for each DuRB so that the receptive field of convolution in each DuRB grows
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Fig. 5. Some examples of the results by DuRN-P for additive Gaussian noise removal.
Sharp images can be restored from heavy noises (σ = 50).

Fig. 6. Examples of motion blur removal on GoPro-test dataset.

its size with l. The entire network consisting of six DuRB-P’s along with initial
and final groups of layers is named DuRN-P. We train the network using l2 loss
(Fig. 5).

3.2 Motion Blur Removal

We use DuRN-U for this task. Following many previous works [9,23,27,31],
we choose a symmetric encoder-decoder network for overall network structure.
Then, following previous work [23] reporting the effectiveness of up- and down-
sampling operations for this task, we employ the same operations for the paired
operation. It achieves PSNR 29.9 dB and SSIM 0.91 on the GoPro-test dataset
[14], while the state-of-the-art DeblurGAN (precisely, the “DeblurGAN-wild”
introduced in the original paper [9]) achieved PSNR 27.2 dB and SSIM 0.95.
Examples of deblurred images are shown in Fig. 6. It is seen that cracks on a
stone-fence and numbers written on the car plate are restored well enough to be
recognized.

Object Detection from Deblurred Images. We tested the two-step approach dis-
cussed earlier using the above CNN for motion blur removal. Given an image
with motion blur, we first apply the above CNN, DuRN-U, to the input image
and then use an object detector to the restored image. We follow the experi-
mental procedure and dataset used in [9]. Note that DuRN-U is trained on the



Improving Generalization Ability of Deep Neural Networks 9

GoPro-train dataset. For the object detector, we use YOLO v3 [17] trained on
the Pascal VOC [3]. Table 1 shows quantitative results. The detection results for
sharp images of the same YOLO v3 detector are used as the ground truths. It is
seen that the proposed DuRN-U outperforms the state-of-the-art DeBlurGAN.

Table 1. Accuracy of object detection from deblurred images obtained by DeBlurGAN
[9] and the proposed DuRN-U on Car Dataset.

Blurred DeBlurGAN[9] DuRN-U (ours)

mAP (%) 16.54 26.17 31.15

4 Image Restoration for Combined Distortions

As explained above, there are many types of image distortion, such as various
types of noises, defocus/motion blur, compression artifacts, haze, raindrops, etc.
Thus, there are two cases for application of image restoration methods to real-
world problems. One is the case where the user knows what image distortion need
to be removed, e.g., a deblurring filter tool in a photo editing software. This is
the case that we have considered above. The other is the case where the user
wants to improve quality of an image but does not know what distortion(s) the
image undergoes, e.g., applications to vision for autonomous cars or surveillance
cameras.

We consider the second case here. Existing studies mostly consider the first
case, which cannot be applied to the second case directly. However, real-world
images usually suffer from a combination of different types of distortion, where we
don’t know mixture ratios and strengths of different distortion types in the input
images. We need image restoration methods that work under such conditions.

There are only a few studies of this problem, such as Yu et al. [26]. The
authors propose a method that adaptively selects and apply multiple light-weight
CNNs; each CNN is trained for different image distortion. Their selection is done
by an agent trained by reinforcemenet learning. However, the gain of accuracy
obtained by their method is not so large, as compared with a dedicated method
(CNN) for a single type of distortion.

We showed that a simple attention mechanism, named operation-wise atten-
tion layer, can better deals with the case of combined image distortions [13].
We propose a layer that performs many operations in parallel, such as convolu-
tion and pooling with different parameters. These operations are weighted by an
attention mechanism built-in the layer, which is intended to work as a switcher
of the operations. The attention weights are multiplied with the outputs of the
operations, which are concatenated and transferred to the next layer. This layer
can be stacked to form a multi-layer network that is fully differentiable. Thus,
it can be trained in an end-to-end manner by gradient descent (Fig. 7).
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Fig. 7. Architecture of the operation-wise attention layer. It consists of an attention
layer, an operation layer, a concatenation operation, and 1 × 1 convolution. Attention
weights over operations of each layer are generated at the first layer in a group of
consecutive k layers. Note that different attention weights are generated for each layer.

We evaluated the proposed approach by using the DIV2K dataset, which
was created in [26] to evaluate their proposed method, RL-Restore. The dataset
consists of about 0.3 million image patches of 63 ×63 pixels. They have multiple
types of distortion, i.e., a sequence of Gaussian blur, Gaussian noise and JPEG
compression with random levels of distortion. The proposed method achieves
improvements of 0.3–0.7 dB (PSNR) and 0.015–0.02 (SSIM) over RL-Restore.

As in the aforementioned experiments on single type distortion, we evaluate
the performance of the proposed method on the task of object detection. That
is, we first restore an input image having combined distortion and then apply
an object detector (SSD300 [12]) to the restored image. Employing the images
from the PASCAL VOC detection dataset, we synthesize combined distortion
of Gaussian blur, Gaussian Noise, and JPEG compression with random levels of
distortion. The proposed method improves detection accuracy by a large margin
(around 30% mAP) compared to the case of applying the same detector to the
distorted images. It outperforms RL-Restore for almost all categories of objects.
Figure 8 shows a selected examples of detection results. It is observed that the
proposed method eliminate the combined distortion effectively and contributes
to more accurate object detection.

5 Summary

We have discussed how to improve generalization ability of CNNs for visual
recognition tasks, particularly in the case where input images undergo various
types of image distortion. We have first pointed out that CNNs trained only on
clean images are vulnerable to distortion in input images. This may be regarded
as co-variate shift, the issue with CNNs or any other machine learning methods.
We have further discussed the three possible approaches to the issue, i.e., (i)
training the CNN also on distorted images, (ii) building more robust CNNs
that can deal with distorted images, even if they are trained on clean images
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Fig. 8. Examples of results of object detection on PASCAL VOC. The box colors
indicate class categories.

alone, and (iii) restoring a clean version from the input distorted image and then
inputting it to a CNN trained only on clean images. We have then introduced two
recent studies of ours that employ the third approach. The first study proposes
an architectural design of CNNs for image restoration targeting at a single type
of distortion. The second study proposes to use a single CNN that can restore
clean image from an input image with combined types of distortion. The former
provides better restoration performance but requires the type of distortion in
input images to be identified beforehand. The latter is designed to be able to
deal with unidentified type of image distortion, in particular, combined distortion
of multiple types with unknown mixture ratios. We will be choosing between
the two methods depending on conditions and requirements of applications. We
believe that there will be room for further improvement in restoration accuracy,
particularly for the second problem setting for unidentified distortion types. This
will be studied in the future.
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