
4Text Processing

Abstract

In the previous chapter we were able to
automatically process structured data to
retrieve biomedical text about any chemical
compound, such as caffeine. This chapter will
provide a step-by-step introduction to how
we can process that text using shell script
commands, specifically extract information
about diseases related to caffeine. The goal
is to equip the reader with an essential set of
skills to extract meaningful information from
any text.

Keywords

NLP: Natural Language Processing · Text
mining · Pattern matching · String matching ·
Word matching · Evaluation metrics ·
Regular expressions · Tokenization · NER:
Named-Entity Recognition · Relation
extraction

In the previous chapter we were able to automat-
ically process structured data to retrieve biomed-
ical text about any chemical compound, such
as caffeine. This chapter will provide a step-by-
step introduction to how we can process that text
using shell script commands, specifically extract
information about diseases related to caffeine.
The goal is to equip the reader with an essential
set of skills to extract meaningful information
from any text.

PatternMatching

We used the grep command in the last chapter
to find a disease in the text, since grep receives
as argument a pattern to find an exact match in
the text, like any search functionality provided
by conventional text editors. However, we may
need to search for multiple patterns even when
interested in a single disease. For example, when
searching for mentions of malignant hyperther-
mia, we may also be interested in finding men-
tions using related expressions, such as:

MH – acronym
MHS – acronym for malignant hyperthermia

susceptible

Since we already know how to deal with
multiple patterns by using the -e option, we may
easily solve this problem by executing:

$ grep -e 'malignant
hyperthermia' -e 'MH' -e '
MHS' chebi_27732.txt

Case Insensitive Matching

When dealing with text, using a case sensitive
search is usually a good approach to avoid wrong
matches. For example, acronyms are normally
in upper case, while the full name is usually in
lowercase having sometimes the first letter of

© The Author(s) 2019
F. M. Couto, Data and Text Processing for Health and Life Sciences,
Advances in Experimental Medicine and Biology 1137,
https://doi.org/10.1007/978-3-030-13845-5_4

45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13845-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-13845-5_4

46 4 Text Processing

each word (or only the first word) in uppercase.
So, instead of using a full case sensitive grep,
we might think on performing a case sensitive
grep for the acronyms and a case insensitive
grep for the disease words using the -i option:

$ grep -e 'MH' -e 'MHS'
chebi_27732.txt

$ grep -i -e 'malignant
hyperthermia' chebi_27732.
txt

The equivalent long form to the -i option
is --ignore-case. We should note that
each execution of grep will produce two
separate lists of matching lines that might be
overlapped.

Alternatively, we can also convert it to just
one case sensitive grep, if we are sure that
Malignant hyperthermia is the only alternative
case to malignant hyperthermia present in the
text. So, we can add it as another pattern:

$ grep -e 'Malignant
hyperthermia' -e '
malignant hyperthermia'

-e 'MH' -e 'MHS' chebi_27732.
txt

Number of Matches

To be sure that we are not losing any match, we
can count the number of matching lines for both
cases. First we execute a case insensitive grep
and then we execute a case sensitive grep, both
using the -c option:

$ grep -c -i 'malignant
hyperthermia' chebi_27732.
txt

$ grep -c -e 'malignant
hyperthermia' -e '
Malignant hyperthermia'
chebi_27732.txt

The equivalent long form to the -c option is --
count.

In our case, the output should show 96 and 95
matching lines for the insensitive and sensitive
patterns, respectively.

This means that there is a line that is not
caught by the case sensitive pattern. To identify
which one is, we can manually analyze each of
the 96 matching lines one by one. But the goal of
this book is exactly avoiding these type of tedious
tasks. One thing we can do to solve this issue is
to find from the case insensitive matches the one
that do not match the case sensitive patterns.

Invert Match

Fortunately, the grep command has the -v op-
tion that inverts the matching and returns the
lines of text that do not contain any matching.
The equivalent long form to the -v option is --
invert-match.

Thus, if we apply the inverted match with the
case sensitive patterns to the output given by the
case insensitive matching, we will get our outlier
mention:

$ grep -i 'malignant
hyperthermia' chebi_27732.
txt | grep -v -e '
Malignant hyperthermia' -e
'malignant hyperthermia'

From the output, we can easily identify the
missing matching line:

...gene are associated with
Malignant Hyperthermia (MH)
and...

We were missing the case where both words have
the first letter in uppercase.

Thus, to obtain all the matching lines in a
case sensitive match we just have to include the
missing match as another pattern:

$ grep -c -e 'malignant
hyperthermia' -e '
Malignant hyperthermia' -e
'Malignant Hyperthermia'

chebi_27732.txt

File Differences

Another alternative to compare different
matches, is to use the diff command that

Pattern Matching 47

receives as input two files and identifies their
differences. So, we can create two auxiliary files
and then apply the diff to them:

$ grep -i 'malignant
hyperthermia'
chebi_27732.txt >
insensitive.txt

$ grep -e 'Malignant
hyperthermia'
-e 'malignant hyperthermia'
chebi_27732.txt > sensitive

.txt
$ diff sensitive.txt insensitive

.txt

The output should be the same text.
A problem that may occur with case sensitive

matching is that some acronyms are defined with
lowercase letters in the middle, such as ChEBI,
and humans are not consistent with the way
they mention them. The same acronym may be
mentioned in their original form or with all letters
in uppercase, or just some of them. Moreover,
these inconsistent mentions sometimes may even
be found in the same publication. We hope not in
this book ! �̈

EvaluationMetrics

These inconsistencies made by humans when
mentioning case sensitive expressions, is one of
the reasons that most online search engines use
case insensitive searches as default. This type
of approach favors recall, while case sensitive
search favor precision1.

Recall is the proportion of the number of
correct matches found by our tool over the total
number of correct mentions in the texts (found
or not found). Case insensitive searches avoid
missing mentions, so they favor recall.

Precision is the proportion of the number of
correct matches found by our tool over the total
number of matches found (correct or incorrect).
Case sensitive searches avoid incorrect matches,
so they favor precision.

1https://en.wikipedia.org/wiki/Precision_and_recall

Normally, there is a trade-off between pre-
cision and recall. Using a technique that im-
proves precision, most of the times, will decrease
recall, and vice-versa. To know how good the
trade-off is, we can use the F-measure, which
is the harmonic average of the precision and
recall2.

WordMatching

Acronyms (or terms) may also appear inside
common words or longer acronyms. For
example, when searching for MH, the word
victimhood will produce a match:

$ echo "victimhood" | grep -i '
MH'

The problem with victimhood could be easily
solved by using case sensitive matching, but not
for a longer acronym. For example, the acronym
NEDMHM for neurodevelopmental disorder
with midbrain and hindbrain malformations will
produce a case sensitive match:

$ echo "NEDMHM" | grep 'MH'

One way to address this problem is to use the
-w option of grep to only match entire words,
i.e. the match must be preceded and followed
by characters that are not letters, digits, or an
underscore (or be at the beginning or end of the
line). The equivalent long form to the -w option
is --word-regexp.

Using this option, neither victimhood or
NEDMHM will produce a match:

$ echo "victimhood" | grep -w -i
'MH'

$ echo "NEDMHM" | grep -w -i 'MH'

Word matching improves precision but de-
creases recall, since we may miss some less
common acronyms that we are not aware of,
but are still relevant for our study. For example,
consider that we may also be interested in the
following acronyms:

2https://en.wikipedia.org/wiki/F1_score

https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/F1_score

48 4 Text Processing

MHE – acronym for malignant hyperthermia
equivocal

MHN – acronym for malignant hyperthermia
normal

If we apply word matching, we will not get a
match, since both exact matches are followed by
a letter:

$ echo "MHE and MHN" | grep -w -
i 'MH'

These are not trivial problems to solve by exact
pattern matching, we may need regular expres-
sions to address some of these issues more effi-
ciently.

Regular Expressions

When dealing with natural language text we may
need more flexibility than the one provided by
exact matching. Regular expressions are an effi-
cient tool to extend exact matching with flexible
patterns, that may find different matches. As an
example, we may be interested in finding all the
mentions of the acronym MHS or MHN in a text.
For doing that, regular expressions provide the
alternation operator that helps us to solve this
issue easily by specifying multiple alternatives to
match in a specific part of the pattern, in this case
an S or an N as the last character.

Regular expressions can be better understood
by clearly separating three distinct components:

input – any string where we want to find
something

pattern – a string that specifies what we are
looking for

match – a fragment of the input (a substring)
where the pattern can be found

In our examples, the input is the text file
chebi_27732.txt, but it can be the amino acid
sequences that we previously extracted from the
UniProt file entries. Until now the pattern has
represented an exact string to look for, where
each match is an exact replica of the pattern
occurring at a given position of the input string.
When using regular expressions, the pattern

contains special characters, whose purpose are
not to directly match with the input but instead
have a special meaning. These special characters
represent operators that specify which different
types of strings we want to find in the input.
For example, strings that start with MH and end
with S or an N. By using regular expressions,
the matches are not replicas of the pattern, they
can be different strings as long as they satisfy the
specified pattern.

Extended Syntax

The grep command allows us the possibility
to include regular expression operators in the
input pattern. grep understands two different
versions of regular expression syntax: basic and
extended3. We will use the extended syntax
for two reasons: (i) the basic does not support
relevant operators, such as alternation; (ii) and to
clearly differentiate exact matching from regular
expression matching. Thus, instead of the -e
option previously used in the grep command,
we will start to use the -E option, which makes
the command interpret the pattern as an extended
regular expression. The equivalent long form to
the -E option is --extended-regexp. We
should note that this option does not affects the
matching when using a pattern without any regu-
lar expression operator, such as MH. For example,
the following commands will produce the same
results:

$ echo -e 'MHS\nMHN' | grep -e
'MH'

$ echo -e 'MHS\nMHN' | grep -E
'MH'

Note, that we use the -e option so the echo
command interpret the \n characters as a new-
line. Thus, the echo command outputs two lines,
that are given as input to the grep command.
We should note that the grep command filters
lines.

3https://www.regular-expressions.info/posix.html

https://www.regular-expressions.info/posix.html

Regular Expressions 49

Alternation

The first regular expression operator we will test
is the alternation, which we introduced above.
An alternation is represented by the bar character
(|) that specifies a pattern where any match
must include either the preceding or following
characters. The preceding and following charac-
ters can be enclosed within parentheses to better
specify the scope of the alternation operator. For
example, the pattern for finding strings that start
with MH and end with S or an N can be written
as:

$ echo -e 'MHS\nMHN' | grep -E
'MH(S|N)'

Basic Syntax
If we use the basic regular expression syntax
no match will be found, since the alternation
operator is not supported:

$ echo -e 'MHS\nMHN' | grep -e
'MH(S|N)'

We will have a match only if the | and the
parentheses are in the input string, since it is not
interpreted as an operator:

$ echo -e 'MH(S|N)' | grep -e
'MH(S|N)'

Scope
To better understand the scope of an alternation,
we can remove the parentheses from the pattern
and add the -w option:

$ echo -e 'MHS\nMHN' | grep -w
-E 'MHS|N'

We only get the first line. This is explained be-
cause the alternation operator is applied to all the
preceding characters, i.e. the grep will search
for the MHS word or the N word. If we add a
single N to the input string we already get another
match:

$ echo -e 'MHS\nN' | grep -w -E
'MHS|N'

We can also move the opening parenthesis one
character to the left:

$ echo -e 'MHS\nMHN' | grep -E
'M(HS|N)'

Only MHS is now displayed, since the alternative
now represents MN without the H.

Multiple Alternatives
We are not limited to two alternatives, we can
have multiple | operators in a pattern. For exam-
ple, the following command will find any of the
three acronyms MHS, MHE or MHN:

$ echo -e 'MHS\nMHN\nMHE' | grep
-E 'MH(S|N|E)'

We can now transform our previous grep
command with multiple case sensitive patterns:

$ grep -c -e 'Malignant
hyperthermia' -e '
Malignant Hyperthermia' -e
'malignant hyperthermia'

chebi_27732.txt

in a grep command with a single pattern using
alternation:

$ grep -c -E '(M|m)alignant(H|h)
yperthermia' chebi_27732.
txt

And we will obtain the same 96 matches.

Multiple Characters

A useful regular expression feature is that we
can use the dot character (.) to represent any
character, so if we want to find all the acronyms
that start with MH we can execute the following
command:

$ grep -o -w -E 'MH.'
chebi_27732.txt | sort -u

We should note that we use the -o option of the
command grep so it just displays the matches
and not all the line that includes the match. The
equivalent long form to the -o option is --only
-matching.

The output will be the following three-
character lines:

50 4 Text Processing

MH
MH)
MH,
MH.
MH1
MH2
MHE
MHN
MHS

If we really want to match only the dot char-
acter, we have to precede it with a backslash
character (\):

$ grep -o -w -E 'MH\.'
chebi_27732.txt | sort -u

Now only the MH. will be displayed.
We can check that there are some matches that

are not really acronyms, such as MH) and MH,.

Spaces
We should note that MH appears because the
space character can also be matched. For exam-
ple, the following text includes a word match
with MH since the parenthesis is considered a
word delimiter character (not a letter, digit or
underscore):

... susceptible to MH (MHS) ...

On the other hand, the following text does not
include a word match with MH :

... markers and MH
susceptibility ...

Thus, what we really want is matches where the
third character is a letter or a numerical digit.

Sometimes, the text includes other characters
that also represent horizontal or vertical space in
typography, such as the tab character. All these
characters are known as whitespaces and can be
represented by the expression \s in a pattern4.
The following command demonstrates that both
the space and the tab characters are matched by
\s:

echo -e 'space: :\ntab:\t:' |
grep -E '\s'

4https://en.wikipedia.org/wiki/Whitespace_character

Groups
Fortunately, the regular expressions include the
group operator that let us easily specify a set of
characters. A group operator is represented by a
set of characters enclosed within square brackets.
Any of the enclosed characters can be matched.

For example, the previous command to find
any of the three acronyms can be replaced by:

$ echo -e 'MHS\nMHN\nMHE' | grep
-E 'MH[SNE]'

We should note that only one of the three letters,
S, N or E will be matched in the input string.

Ranges
Still, this is not solving our need to only match
letters or digit. However, we can also specify
characters ranges with the dash character (-). For
example, to find all the acronyms that start with
MH followed by any alphabet letter:

$ grep -o -w -E 'MH[A-Z]'
chebi_27732.txt | sort -u

This will result in only three acronyms:

MHE
MHN
MHS

We should note that A-Z represents any alpha-
bet letter in uppercase, a lowercase letter will not
be matched:

$ echo -e 'MHS\nMHs' | grep -E '
MH[A-Z]'

If we intend to keep the usage of a case sen-
sitive grep and at the same time find lowercase
matches, then we need to add the a-z range:

$ echo -e 'MHS\nMHs' | grep -E '
MH[A-Za-z]'

We should note that the dot character inside a
range represents itself and not any character:

$ echo -e 'MHS\nMH.' | grep -E '
MH[.]'

Additionally, to include the acronyms that end
with a numerical digit we need to add the 0-9
range:

https://en.wikipedia.org/wiki/Whitespace_character

Regular Expressions 51

$ grep -o -w -E 'MH[A-Z0-9]'
chebi_27732.txt | sort -u

Finally, we have the correct list of all three
character acronyms starting with MH:

MH1
MH2
MHE
MHN
MHS

Negation
Another frequent case is the need to match any
character with a few exceptions. For example, if
we need to find all the matches that start with MH
followed by any character except an alphabet let-
ter. Fortunately, we can use the negation feature
within a group operator. The negation feature is
represented by the circumflex character (^) right
next to the left bracket. The negation means that
all the characters and ranges enclosed within the
brackets are the ones that cannot be matched.
Thus, a solution to the above example is to add
the A-Z range after the circumflex:

$ grep -o -w -E 'MH[^A-Z]'
chebi_27732.txt | sort -u

We can see that all of the three acronyms
MHS, MHE or MHN will be missing from the
output:

MH
MH,
MH.
MH)
MH1
MH2

If we do not want the MH acronym, we can
add the space character to the negative group:

$ grep -o -w -E 'MH[^A-Z]'
chebi_27732.txt | sort -u

The output should now contain one less
acronym:

MH,
MH.
MH)
MH1
MH2

Quantifiers

Above we were interested in finding acronyms
composed of exactly three characters. However,
we may need to find all acronyms that start with
MH independently of their length. This function-
ality is also available in regular expressions using
the quantifiers operators.

Optional
The simplest quantifier is the optional operator
that is specified by an item followed by the
question mark character (?). The item can be a
character, an operator or a sub-pattern enclosed
by parentheses. That item becomes optional for
matching, i.e. a match can either contain that
item or not.

For example, to find all the acronyms starting
with MH and followed by one alphabetic letter or
none:

$ grep -o -w -E 'MH[A-Z0-9]?'
chebi_27732.txt | sort -u

Given that the third character is optional the
output will include the two-character acronym
MH, but not the MH match:

MH
MH1
MH2
MHE
MHN
MHS

We can add the space character to the
group:

$ grep -o -w -E 'MH[A-Z0-9]?'
chebi_27732.txt | sort -u

Now the output includes the two-character
acronym MH and the MH match:

MH
MH
MH1
MH2
MHE
MHN
MHS

52 4 Text Processing

Multiple and Optional
To find all the acronyms independently of their
length, we can use the asterisk character (*).
The preceding item becomes optional and can be
repeated multiple times. For example, to find all
the acronyms starting with MH and which may
be followed any number of alphabetic letters or
numeric digits:

$ grep -o -w -E 'MH[A-Z0-9]*'
chebi_27732.txt | sort -u

The output now includes the four-character
acronym MHS1:

MH
MH1
MH2
MHE
MHN
MHS
MHS1

We should note that the grep command
uses a greedy approach, i.e. it will try to match
as many characters as possible. For example,
the following command will match MH1 and
not MH:

$ echo 'MH1' | grep -o -E 'MH
[0-9]*'

Multiple and Compulsory
To make the preceding item compulsory and able
to repeat it multiple times, we may replace the
asterisk by the plus character (+). For example,
the following pattern will find all the acronyms
starting with MH followed by at least one alpha-
betic letter or numeric digit:

$ grep -o -w -E 'MH[A-Z0-9]+'
chebi_27732.txt | sort -u

We should note that the output does not con-
tain the two character acronym MH:

MH1
MH2
MHE
MHN
MHS
MHS1

All Options
The above quantifiers are the most popular, but
the functionality of all of them can be reproduced
by using curly braces to specify the minimal and
maximum number of occurrences. The item is
followed by an expression of the type {n,m}
where n and m are to be replaced by a number
specifying the minimum and maximum number
of occurrences, respectively. n and m may also
be omitted, which means that no minimum or
maximum limit is to be imposed.

Using curly brackets, the question mark char-
acter (?) can be replaced by {0,1}. Thus, the
following two patterns are equivalent:

$ grep -o -w -E 'MH[A-Z0-9]?'
chebi_27732.txt | sort -u

$ grep -o -w -E 'MH[A-Z0
-9]{0,1}' chebi_27732.txt
| sort -u

The asterisk character (*) can be replaced
by {0,}. Thus, the following two patterns are
equivalent:

$ grep -o -w -E 'MH[A-Z0-9]*'
chebi_27732.txt | sort -u

$ grep -o -w -E 'MH[A-Z0-9]{0,}'
chebi_27732.txt | sort -u

The plus character (+) can be replaced by
{1,}. Thus, the following two patterns are
equivalent:

$ grep -o -w -E 'MH[A-Z0-9]+'
chebi_27732.txt | sort -u

$ grep -o -w -E 'MH[A-Z0-9]{1,}'
chebi_27732.txt | sort -u

On the other hand using {1,1} is the same as
not having any operator. Thus, the following two
patterns are equivalent:

$ grep -o -w -E 'MH[A-Z0-9]'
chebi_27732.txt | sort -u

$ grep -o -w -E 'MH[A-Z0
-9]{1,1}' chebi_27732.txt
| sort -u

The previous commands display the all the
three-character acronyms:

Position 53

MH1
MH2
MHE
MHN
MHS

For example, if we are looking for acronyms
with exactly 4 characters then we can apply the
following pattern:

$ grep -o -w -E 'MH[A-Z0
-9]{2,2}' chebi_27732.txt
| sort -u

We should note that we use 2 as both the mini-
mum and maximum since MH already count as 2
characters.

The output of the previous command is now
the four-character acronym:

MHS1

Position

Sometimes besides the match, we are also inter-
ested in limiting the matches to specific parts of
the input string. For example, to identify start
and stop codons in a protein sequence, we need
to limit the matches to the beginning or the end
of the sequence. In text, we may for example
be interested in lines starting with a name of
a disease. To take in account the position of a
match regular expressions patterns can start with
the circumflex character (^) and/or end with the
dollar sign character ($).

If the pattern starts with a circumflex then
only matches at the beginning of the line will be
considered. On the other hand, if the pattern ends
with a dollar then only matches at the end of the
line will be considered.

Beginning

For example, if we are looking for lines starting
with Malignant Hyperthermia we can use the
following pattern:

$ grep -E '^(M|m)alignant (H|h)
yperthermia' chebi_27732.
txt

The output will include the list of lines begin-
ning with a mention to Malignant Hyperthermia:

...
Malignant hyperthermia (MH) is a

potentially fatal autosomal
...

Malignant hyperthermia (MH) is a
pharmacogenetic disorder ...

To check how many of the matching lines
were filtered, we can count the number of oc-
currences when using the circumflex and when
not:

$ grep -c -E'^(M|m)alignant(H|h)
yperthermia' chebi_27732.
txt

$ grep -c -E'(M|m)alignant(H|h)
yperthermia' chebi_27732.
txt

The output will show that only 23 of the 96
matches were considered.

Ending

If we are looking for lines ending with a mention
to Malignant Hyperthermia, then we can add the
dollar character to the end of the pattern:

$ grep -E '(M|m)alignant (H|h)
yperthermia.$' chebi_27732
.txt

To allow a punctuation character before the end
of the line, we added the dot character before the
dollar character in the pattern. The dot character
matches any character, including the dot itself.

The output will be the list of lines ending with
a mention to Malignant Hyperthermia:

Novel mutation in the RYR1 gene
(R2454C) in a patient with
malignant hyperthermia.

54 4 Text Processing

Identification of a novel
mutation in the ryanodine
receptor gene (RYR1) in
patients with malignant
hyperthermia.

Novel skeletal muscle ryanodine
receptor mutation in a large
Brazilian family with
malignant hyperthermia.

...

We can check how many lines were filtered by
using again the -c option:

$ grep -c -E '(M|m)alignant(H|h)
yperthermia.$' chebi_27732
.txt

$ grep -c -E '(M|m)alignant(H|h)
yperthermia' chebi_27732.
txt

The output will show that only 15 of the 96
matches were at the end of the line.

Near the End

Sometimes we do not want the mention ending
exactly at the last character. We may be more
flexible and allow a following expression, or
a given number of characters. For example, to
allow 10 other characters between the end of the
line and the mention of Malignant Hyperthermia,
we can add a quantifier to the dot operator:

$ grep -c -E '(M|m)alignant (H|h
)yperthermia.{0,10}$'
chebi_27732.txt

The output will show that we have 20 matches.
If we remove the -c option, we will be able to

check that words, such as families and patients,
are now allowed to appear between the mention
of Malignant Hyperthermia and the end of the
line:

...
Novel mutations in C-terminal

channel region of the
ryanodine receptor in
malignant hyperthermia
patients.

...
Novel missense mutations and

unexpected multiple changes
of RYR1 gene in 75 malignant
hyperthermia families.

...

Word in Between

To allow a word in between, independently of
its length, we can add to the pattern an optional
sequence of non-space characters (the word) pre-
ceded by a space:

$ grep -c -E '(M|m)alignant(H|h)
yperthermia([^]*)?.$'
chebi_27732.txt

The output will show that we have 24 matches.
We should note that the [^] operator avoids
having two words.

If we remove the -c option, we will be able
to check that lengthy words (with more than
10 characters), such as susceptibility, are now
allowed to appear between the mention of Ma-
lignant Hyperthermia and the end of the line:

...
Ryanodine receptor gene point

mutation and malignant
hyperthermia susceptibility.

...

Full Line

If we want lines that start with a mention to Ma-
lignant Hyperthermia and end with an acronym,
MH or MHS, then we can execute two grep
commands. The first gets the lines starting with
Malignant Hyperthermia and the next filters the
output of the latter with lines ending with an
acronym:

$ grep -E '^(M|m)alignant (H|h)
yperthermia' chebi_27732.
txt | grep -w -E 'MHS?.$'

Alternatively, we can add both the circum-
flex and dollar operators to the same pattern.
However, we cannot forget to add .* to match

Tokenization 55

anything in between them, since we are asking
full line matches:

$ grep -w -E'^(M|m)alignant(H|h)
yperthermia.*MHS?.$'
chebi_27732.txt

We can see that both commands match all the
text of the abstract since each abstract is stored in
a single line of the file:

Malignant hyperthermia (MH) is a
pharmacogenetical
complication ... as for

genetic diagnosis of MH.
Malignant hyperthermia

susceptibility (MHS) is a
subclinical pharmacogenetic
disorder ... been tested
positive for MHS.

This demonstrates the problem of tokenization,
since usually what we really need is to match a
full sentence or a phrase. And in that case each
line should represent a sentence or phrase from
the abstract.

Match Position

For more advanced processing, we may be in-
terested in knowing the exact position of the
matches in a given line. This can be done by
using the -b option of grep, which provides the
number of bytes in the line before the start of the
match:

$ echo 'MHS MHN MHE' | grep -b -
o -w -E 'MH[SNE]'

The equivalent long form to the -b option is --
byte-offset.

The output shows the list of matches preceded
by their position in the given line:

0:MHS
4:MHN
8:MHE

Tokenization

As we have shown in the previous section, some-
times we need to work at the level of a sentence
and not use a full document as the input string.
Tokenization is a Natural Language Processing
(NLP) task that aims at identifying boundaries
in the text to fragment it into basic units called
tokens. These tokens can be sentences, phrases,
multi-word expressions, or words.

Character Delimiters

In most languages, some specific characters can
be considered as accurate boundaries to fragment
text into tokens. For example, the space character
to identify words; the period (.), the question
mark (?) and the exclamation mark (!) to identify
the ending of a sentence; and the comma (,),
the semicolon (;), the colon (:) or any kind of
parenthesis to identify a phrase within a sentence.
However, this problem may be more complex in
languages without explicitly delimiters, such as
Chinese (Wu and Fung 1994).

A common approach to tokenization is to use
regular expressions to replace these delimiters by
newline characters. This will result in a token per
line. For example, we can replace the characters
specifying the end of a sentence with a newline
by using the tr command and then count the
number of lines:

$ tr '[.!?]' '\n' < chebi_27732.
txt | wc -l

We get 1493 lines from the original 248
lines:

$ wc -l chebi_27732.txt

Unfortunately, this is not just so simple. We
need to analyze the output:

$ tr '[.!?]' '\n' < chebi_27732.
txt | less

56 4 Text Processing

Wrong Tokens

We can check that: (i) many lines are empty
because an extra newline character will be added
to the last sentence, and (ii) the dot character is
also used as a decimal mark in a number, then
some sentences are split in multiple lines because
they have decimal number in them. For example,
the original sentence:

These 10 mutations account for
21.9% of the North American
MH-susceptible population

is split in two lines:

These 10 mutations account for
21

9% of the North American MH-
susceptible population

String Replacement

This means that looking at just one character is
not enough, we need some context. For perform-
ing this, we will use the sed command that we
may consider as a more powerful version of the
tr command. The sed command is a stream ed-
itor that can receive as input a string and perform
basic text transformations, such as replace one
expression by another, that are available in almost
all text editors. For example, we can use a simple
sed to convert every mention of caffeine by its
ChEBI identifier:

$ sed -E 's/caffeine/CHEBI
:27732/gi' chebi_27732.txt

The -E option allow us to use extended regular
expressions, like we used before in grep. The
s option has the following syntax 's/FIND/
REPLACE/FLAGS', where: FIND is the pattern
to find in the input string; REPLACE the expres-
sion to replace the matches; FLAGS are multiple
options, such as g to replace all matches in each
line and not just the first one, and i to be case
insensitive.

For example, the original fragment of text:

... link between the caffeine
threshold and tension ...

will be converted to:

... link between the CHEBI:27732
threshold and tension ...

Multi-character Delimiters

To replace the delimiter characters by a newline
when followed by at least one space character, we
can use the following command:

$ sed -E 's/[.!?] +/\n/g'
chebi_27732.txt

We should note that by making compulsory a
space character, we avoid: (i) empty lines by
splitting a sentence that is already at the end of
the line (assuming there are no ghost space char-
acters at the end of each line), and (ii) decimal
markers because they are followed by numerical
digits and not spaces.

We now get 1067 lines from the original 248
lines:

$ sed -E 's/[.!?] +/\n/g'
chebi_27732.txt | wc -l

Keep Delimiters

The previous sed command is removing the
delimiter characters from the text, and this
may cause other problems. The best solution
is to keep the delimiter characters and just
add the newline. The sed command allows
us to keep each match for a specific part of
the pattern (sub-pattern) by enclosing it within
parentheses. To include the match of a sub-
pattern in the replace expression, we can use
the backslash and its numerical order. Thus, we
can improve our sed command by using this
technique so we do not remove any delimiter
character:

$ sed -E 's/([.!?])(+)/\1\n\2/g
' chebi_27732.txt

Entity Recognition 57

However, other common issues may still per-
sist. For instance, there are some sentences start-
ing right after the delimiter characters without
any space in between:

... bulk.Fetal ...

... sequencing.Whole ...

These sentences include a delimiter character
directly followed by an alphabetic letter:

$ sed -E 's/([.!?])(+)/\1\n\2/g
' chebi_27732.txt | grep -
i '[.!?][a-z]'

To minimize this issue, we can change the pat-
tern so the compulsory space character become
optional, but requiring a following uppercase
alphabetic letter:

$ sed -E 's/([.!?])(*[A-Z])/\1\
n\2/g' chebi_27732.txt |
wc -l

We now get 1127 lines, i.e. this pattern is
more flexible and was able to split more 60
sentences. This does not mean that is free of
errors. It is almost impossible to derive a rule
that covers all the possible typos humans can
produce.

As an example, Fig. 4.1 show a complex
pattern adapted from Wikipedia. The pattern
is equivalent to \. {2,}[A-Z], and identifies
multiples spaces at the beginning of a sentence.
The pattern requires at least two spaces to be
matched, but only after a period and before an
uppercase letter.

Sentences File

Using our previous pattern, we can update
our script named gettext.sh to provide the text
already split in sentences by adding the sed
command:

1 ID=$1 # The CHEBI identifier
given as input is renamed
to ID

2 grep -e '<title>' -e '<rdfs:
comment>' chebi_$ID_*.
rdf | \

Fig. 4.1 Identifying multiple spaces at the beginning of a
sentence using regular expressions (Adapted from: https://
en.wikipedia.org/wiki/Regular_expression)

3 gawk -F'[<>]' '{ print $3 }' |
\

4 sed -E 's/([.!?])(*[A-Z])/\1\
n\2/g'

To save the output as a file named chebi_27732_
sentences.txt, we only need to add the redirection
operator:

$./gettext.sh 27732 >
chebi_27732_sentences.txt

Each line of the file chebi_27732_sentences.txt
represents a sentence.

Entity Recognition

To select the sentences with one of our acronyms,
we can use the grep command and our sen-
tences file:

$ grep -w -E 'MH[SNE]?'
chebi_27732_sentences.txt

The output will only include matching sen-
tences:

...
Interestingly, the data suggest

a link between the caffeine
threshold and tension values
and the MH/CCD phenotype.

Alternatively, we can use the -n option to get
the number of the line and the -o option to get
the acronym matched:

https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression

58 4 Text Processing

$ grep -n -o -w -E 'MH[SNE]?'
chebi_27732_sentences.txt

The equivalent long form to the -n option is
--line-number. The output should be some-
thing like this:

...
1106:MH
1106:MH
1108:MH
1110:MH
1111:MH

We can now make a script that receives a
pattern as argument and the input text as the
standard input, to display the line numbers and
the matches in a TSV format. Thus, let us create a
script file named getentities.sh with the following
lines:

1 PATTERN=$1
2 grep -n -o -w -E $PATTERN | \
3 tr ':' '\t'

Again we should not forget to save the file in our
working directory, and add the right permissions
with chmod, as we did with our scripts in the
previous chapter.

The first line stores the pattern given as ar-
gument in the variable PATTERN. The grep
command finds the matches and the tr command
replaces each colon by a tab character to produce
TSV content.

We can now execute the script giving the
pattern as argument and the sentences file as
standard input:

$./getentities.sh 'MH[SNE]?' <
chebi_27732_sentences.txt

The output should be something like this:

...
1106 MH
1106 MH
1108 MH
1110 MH
1111 MH

We should note that now we have the values
separated by a tab character, i.e. the output is in
TSV format.

The output can also be saved as a TSV file
that we can open directly in our preferred spread-
sheet application. For example, to save it as
chebi_27732.tsv, we only need to add the redi-
rection operator:

$./getentities.sh 'MH[SNE]?' <
chebi_27732_sentences.txt
> chebi_27732.tsv

Select the Sentence

If we want to analyze a specific matched sen-
tence, we can use a text editor and go to that
line number. A more efficient alternative is to use
the print p option of sed to output a given line
number. For example, to check the MHS match at
line 2:

$ sed -n '2p'
chebi_27732_sentences.txt

Now we can easily check the context of the
match:

... in susceptible people (MHS)
by volatile ...

Pattern File

The script created in the previous section only
accepts one pattern, however we may need to
recognize different entities, or different mentions
of the same entity, such as the official name, pos-
sible synonyms, and the acronyms. Fortunately,
grep allows us to include a list of patterns
directly from a file using the -f option. The
equivalent long form to the -f option is --
file=FILE. For example, we can create a text
file named patterns.txt with the following three
patterns:

(M|m)alignant (H|h)yperthermia
MH[SNE]?
(C|c)affeine

Then we can execute the previous grep but
using multiple patterns specified in the pattern
file:

Relation Extraction 59

$ grep -n -o -w -E -f patterns.
txt chebi_27732_sentences.
txt

Analyzing the output, we can check that the
same sentences may include different entities:

...
1110:MH
1110:caffeine
1111:caffeine
1111:MH

We can now update our script named geten-
tities.sh to receive as input not a single pattern
but the filename where multiple patterns can be
found.

1 PATTERNS=$1
2 grep -n -o -w -E -f $PATTERNS

| \
3 tr ':' '\t'

We can execute the script giving as argument
the file containing the patterns:

$./getentities.sh patterns.txt
< chebi_27732_sentences.
txt

To save the output as a file named chebi_27732.tsv,
we only need to add the redirection operator:

$./getentities.sh patterns.txt
< chebi_27732_sentences.
txt > chebi_27732.tsv

Using the patterns.txt file is very useful if for
example we are not focused in a single disease,
and we want to find any disease mentioned in
the text. In these cases, we have to create a file
with the full lexicon of diseases. This topic will
be addressed in the following chapter.

Relation Extraction

Finding the relevant entities in text is some-
times not enough. We need to know which sen-
tences may describe possible relationships be-
tween those entities, such as a relation between
a disease and a compound.

This is a complex text mining challenge, but a
simple approach is to construct a pattern that al-
low any kind of characters between two entities:

$ grep -n -w -E 'MH[SNE]?.*(C|c)
affeine'
chebi_27732_sentences.txt

The following sentence is one of the seven
displayed sentences mentioning a possible
relation:

239: ... MHS families were
investigated with a caffeine
...

However, we are missing all the sentences that
have caffeine first:

$ grep -n -w -E '(C|c)affeine.*
MH[SNE]?'
chebi_27732_sentences.txt

We will be able to see that sometimes caffeine
comes first:

801: ... caffeine-halothane
contracture test were greater
in those who had a known MH

...
1111: ... caffeine threshold and

tension values and the MH
...

Multiple Filters

The most flexible approach is use two grep
commands. The first selects the sentences men-
tioning one of the entities, and the other selects
from the previously selected sentences the ones
mentioning the other entity. For example, we
can first search for the acronyms and then for
caffeine:

$ grep -n -w -E 'MH[SNE]?'
chebi_27732_sentences.txt
| grep -w -E '(C|c)affeine
'

This will show all the nine sentences mentioning
caffeine and an acronym.

60 4 Text Processing

Relation Type

If we are interested in a specific type of rela-
tionship, we may have an additional filter for a
specific verb. For example, we can add a filter for
sentences with the verb response or diagnosed:

$ grep -n -w -E 'MH[SNE]?'
chebi_27732_sentences.txt
| grep -w -E '(C|c)affeine
' | grep -w -E 'response|
diagnosed'

We should note that this does not take in account
where the verb appears in the sentence. For exam-
ple, in the following sentence the verb response
appears first than any of the two entities:

50: The relationship between the
IVCT response and genotype

was ... the number of MHS
discordants ... at 2.0\,mM
caffeine ...

If the verb needs to appear between the two
entities, we have to construct a pattern that have
these words in the middle of them:

$ grep -n -w -E 'MH[SNE]?.*(
response|diagnosed).*(C|c)
affeine'
chebi_27732_sentences.txt

We can see now that the previous sentence (line
50) is not presented as a match.

Remove Relation Types

We may also be interested in ignoring specific
type of relations. To do that, we only need to
use the -v (or --invert-match) option. For
example, to ignore sentences with the word re-
sponse or diagnosed:

$ grep -n -w -E 'MH[SNE]?'
chebi_27732_sentences.txt
| grep -w -E '(C|c)affeine
' | grep -v -w -E '
response|diagnosed'

All the resulting sentences do not mention
response or diagnosed.

Further Reading

If we want to have a deeper knowledge about
text processing tasks and challenges, we
may be interested in reading some chapters
of the book entitled Speech and language
processing (Jurafsky and Martin 2014).
The book is a highly specialized document
explaining in full detail the topics here briefly
described.

To have an overview about the state-of-art in
text processing tools using biomedical literature,
we should consider reading a recent and compre-
hensive survey (Lamurias and Couto 2019).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	4 Text Processing
	Pattern Matching
	Pattern Matching
	Case Insensitive Matching
	Case Insensitive Matching
	Number of Matches
	Number of Matches
	Invert Match
	Invert Match
	File Differences
	File Differences
	Evaluation Metrics
	Evaluation Metrics
	Word Matching
	Word Matching

	Regular Expressions
	Regular Expressions
	Extended Syntax
	Extended Syntax
	Alternation
	Alternation
	Basic Syntax
	Scope
	Multiple Alternatives

	Multiple Characters
	Multiple Characters
	Spaces
	Groups
	Ranges
	Negation

	Quantifiers
	Quantifiers
	Optional
	Multiple and Optional
	Multiple and Compulsory
	All Options

	Position
	Position
	Beginning
	Beginning
	Ending
	Ending
	Near the End
	Near the End
	Word in Between
	Word in Between
	Full Line
	Full Line
	Match Position
	Match Position

	Tokenization
	Tokenization
	Character Delimiters
	Character Delimiters
	Wrong Tokens
	Wrong Tokens
	String Replacement
	String Replacement
	Multi-character Delimiters
	Multi-character Delimiters
	Keep Delimiters
	Keep Delimiters
	Sentences File
	Sentences File

	Entity Recognition
	Entity Recognition
	Select the Sentence
	Select the Sentence

	Pattern File
	Pattern File
	Relation Extraction
	Relation Extraction
	Multiple Filters
	Multiple Filters
	Relation Type
	Relation Type
	Remove Relation Types
	Remove Relation Types

	Further Reading
	Further Reading

