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Abstract. Analysis of tubular glands plays an important role for gas-
tric cancer diagnosis, grading, and prognosis; however, gland quantifica-
tion is a highly subjective task, prone to error. Objective identification
of glans might help clinicians for analysis and treatment planning. The
visual characteristics of such glands suggest that information from nuclei
and their context would be useful to characterize them. In this paper we
present a new approach for segmentation of gland nuclei based on nuclear
local and contextual (neighborhood) information. A Gradient-Boosted-
Regression-Trees classifier is trained to distinguish between gland-nuclei
and non-gland-nuclei. Validation was carried out using a dataset contain-
ing 45702 annotated nuclei from 90 1024 × 1024 fields of view extracted
from gastric cancer whole slide images. A Deep Learning model was
trained as a baseline. Results showed an accuracy and f-score 5.4% and
23.6% higher, respectively, with the presented framework than with the
Deep Learning approach.

1 Introduction

Gastric cancer (GC) is among the most diagnosed cancers and the second most
frequent cause of cancer-related death worldwide [1]. Geographically, the highest
incidence of GC is in Asia, Latin America, and the Caribbean [2,3]. In Colombia,
GC is the first cause of cancer-related death, representing a 15% of all cancer
deaths, with a high incidence in the Andean zone, especially in the departments
of Nariño, Boyacá, and Cundinamarca. Currently, it is considered a major public
health problem that has generated an expense of more than 47 million USD in
five years [4].

GC comprises several kinds of lesions with different severity grades. From
such lesions, adenocarcinoma is the most common, representing more than 90%
of all GC [5]. Characterization and quantification of the adenocarcinoma might
establish plausible chains of events that improve the disease understanding and
reduce its mortality rates. Diagnosis is usually reached by an endoscopic biopsy
of the stomach which is processed and analyzed by pathologists who determine
the degree of malignancy [6]. One of the most common approaches to identify
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and grade gastric adenocarcinomas is by identifying and estimating the density
of glands. Low-grade lesions are characterized by the presence of well/moderately
differentiated glands (Fig. 1-a). In high-grade lesions, glands are highly irregu-
lar and poorly differentiated (Fig. 1-b) [5,7]. Identification of glands plays an
important role not only in diagnosis but also in establishing some prognosis
[7]. An accurate quantification is therefore essential for both the decision mak-
ing flow and the treatment planning. Unfortunately, this process has remained
highly subjective and prone to error. In this context, automatic measures may
contribute to identify tubular glands on GC samples.

Fig. 1. Representative images of Hematoxylin-Eosin stained tissue from gastric lesions.
(a) Well-differentiated glands, (b) Poorly-differentiated glands.

This work introduces an automatic strategy that exploits nuclear local and
contextual information to identify gland nuclei in fields of view (FoVs) extracted
from gastric cancer whole slide images (WSIs). The present approach starts
by automatically segmenting nuclei with a watershed-based algorithm [8]. Each
nucleus is then characterized by two types of features: first, its own morpho-
logical properties (size, shape, color, texture, etc.), second, its neighbor nuclei
features within a determined radius. Such features are used to train a Gradient-
Boosted-Regression-Trees (GBRT) classifier to differentiate between gland-nuclei
and non-gland-nuclei. Unlike other state-of-the-art methods, any feature in this
approach exploits nuclei relative information, i.e., any nucleus information is
always relative to how such feature is with respect to its surrounding nuclei.
This strategy is compared with a Deep Learning (DL) model that was trained
to identify gland-nuclei. This DL model receives as input patches from WSIs
and outputs probability maps that are thresholded. A watershed-based algo-
rithm segments then the binary output map and splits the connected/overlaid
cases to set the final candidates.
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2 Methodology

2.1 Preprocessing: Nuclei Segmentation

A watershed-based algorithm [8] is applied to segment nuclei, generating a mask
with the position of each nucleus. Each detected nucleus is then assigned to the
class either gland-nucleus or non-gland-nucleus (See Fig. 2).

Fig. 2. Description of the nuclei segmentation. (a) Original image, (b) gland-nuclei
mask, (c) non-gland-nuclei mask

2.2 Nuclear Local and Contextual Information (NLCI)

In H&E images, tubular gland nuclei are generally distinguished from other
cell nuclei by their orientation, color, oval shape, eosinophilic cytoplasm, and
proximity to other similar nuclei. For this reason, after nuclei were segmented,
a set of low-level features were extracted, including shape (nuclei structural
area, ratio between axes, etc.), texture (Haralick, entropy, etc.), and color (mean
intensity, mean red, etc.). Each nucleus was represented by this set of local
features. Additionally, for each nucleus, a set of circles with incremental radii of
k = dL × 10, dL × 20, dL × 30 pixels were placed at the nucleus center (begin
dL = 20 pixels the averaged nuclei diameter), aiming to mimic a multi-scale
representation. Finally, a set of regional features was computed within each circle
and used to characterize each of the segmented nuclei. These features measure
the neighborhood density and relative variations in color, shape, and texture.

A set of 57 local and contextual features were extracted from each image
nuclei and the 33 most discriminating characteristics were selected by distri-
bution analysis and Infinite Latent Feature Selection (ILFS) algorithm [9]. A
GBRT classifier [10] was then trained to differentiate between the gland-nuclei
and non-gland-nuclei classes. Specifically, we used an adapted GBRT framework
[11] which emphasizes the minimization of the loss function.
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2.3 Baseline

The baseline corresponded to a state-of-the-art deep learning approach known as
Mask Region-based Convolutional Neural Network (R-CNN). This modification
of the Fast R-CNN algorithm [12] has been used in the Kaggle 2018 Data Science
Bowl challenge for identifying wider range of nuclei across varied conditions [13].
It uses a deep convolutional network with a single-stage training and a multi-
scale object segmentation. Mask R-CNN outputs an object detection score and
its corresponding mask [14].

The DL model was trained using a set of patches extracted from the FoVs.
The positive class patches correspond to the area covered by the bounding box
of each gland nucleus while the negative class patches were taken from the back-
ground, i.e., regions with non-gland nuclei. Aiming to increase the number of
training samples, different transformations (e.g., rotation and mirroring) were
applied to the patches. Model training was carried out using a total of 20 epoch
cycles with 100 steps each.

Figure 3 presents the architecture of a trained DL model for the exploratory
stage. A random extraction of a Region of Interest (RoI) is performed. This
RoI is projected to a convolutional network that generates a feature map. These
features are introduced to the RoI pooling layer for further processing. At the
last stage, fully connected layers generate the desired outputs, including the
gland nuclei candidate bounding box and mask.

Fig. 3. Mask R-CNN work flow. Figure extracted and adapted from [12]

3 Experimentation

3.1 Dataset

The dataset consisted of 90 FoVs of 1024 × 1024 pixels at 40× extracted from
a set of H&E WSIs taken from 5 patients who were diagnosed with GC. The
WSIs were provided by the Pathology Department of Universidad Nacional de
Colombia. A total of 45702 nuclei were manually annotated, being 12150 gland
nuclei while the remaining 33552 corresponded to other structures (non-gland
nuclei).
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3.2 Experiments

Two experiments were carried out. The first attempted to classify between gland-
nuclei and non-gland-nuclei using the NLCI approach. A Monte Carlo Cross
validation method with 10 iterations was used. At each iteration, 70% of the
whole set of FoVs was used to train the GBRT classifier and the remaining 30%
was used to test the trained model. Finally, the measured performances along
the 10 iterations were averaged.

The second experiment aimed to identify gland-nuclei using the DL model.
For this purpose, 60 FoVs were used to train the model and the remaining 30 for
testing. In this case, gland-nuclei detection was assessed based on the number of
detected nuclei centroids that correctly overlapped with the ground truth nuclei,
judged as correct when centroids were within one nuclear radius.

Fig. 4. Gland nuclei Segmentation showing, the ground-truth label (a), NLCI (b) and
R-CNN with each gland nuclei candidate individually colored (c).

Table 1. Comparative measurements for both approaches.

Metrics NLCI R-CNN

Accuracy 0.977 0.923

Precision 0.959 0.585

F-score 0.955 0.719

3.3 Experimental Results

Table 1 presents different performance metrics for both assessed approaches.
NLCI achieved an accuracy of 0.977 and an F-measure of 0.955, while R-CNN
yielded corresponding accuracy and F-measures of 0.923 and 0.719, respectively.
For the qualitative results, Fig. 4 shows the resulting gland nuclei segmentation
from both approaches, where R-CNN generates its own masks of single gland
nucleus presented by individual colors.
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4 Concluding Remarks

In this article, two different approaches to automatically detect gland nuclei on
gastric cancer images were presented and compared: a model based on nuclear
local and contextual information and a DL model. Results demonstrate that
local and contextual features are appropriate to describe the structural features
of tubular gland nuclei. Despite the DL model presented good results, this app-
roach requires a powerful/expensive infrastructure, long training times, and huge
quantities of annotated data. Due to the lower precision of the model, it indi-
cates the that only local information its taken into account. Future work includes
quantification of glands to establish correlation with cancer grade and patient
prognosis.
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