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Abstract. Accurate segmentation of intervertebral discs is a critical
task in clinical diagnosis and treatment. Despite recent progress in apply-
ing deep learning to the segmentation of multiple natural image scenar-
ios, addressing of the intervertebral disc segmentation with a small-sized
training set are still challenging problems. In this paper, a new frame-
work with fully dilated separable convolution (FDS-CNN) is proposed
for the automated segmentation of the intervertebral disc using a small-
sized training set. Firstly, a fully dilated separable convolutional net-
work is designed to effectively prevent the loss of context information
by reducing the number of down-sampling. Secondly, a multi-modality
data fusion and augmentation strategy are proposed, which can increase
the number of samples, as well as make full use of multi-modality
image data. Experimental results validate the proposed framework in the
MICCAI 2018 Challenge on Automatic Intervertebral Disc Localization
and Segmentation from 3D Multi-modality MR Images, demonstrating
excellent performance in comparison with other related segmentation
methods.

Keywords: Intervertebral disc · Dilated separable convolution ·
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1 Introduction

Disc degeneration is likely to cause various back problems, where accurate seg-
mentation of intervertebral discs (IVDs) from MR images is a critical task in
clinical diagnosis and treatment [1]. Recent advances of deep learning techniques
have greatly facilitated the segmentation of MR images. Given a MR image
(either 2D or 3D), deep learning systems can automatically localize and segment
all related lesions end-to-end without user intervention. However, for the seg-
mentation of intervertebral discs, the large range of IVD shapes and the limited
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number of available datasets pose significant challenges in practical applications,
e.g., MICCAI 2018 Challenge on Automatic Intervertebral Disc Localization and
Segmentation. Especially, for this challenge, the IVD shapes are dramatically dif-
ferent even in the same type of IVDs, where the availably small-sized dataset
(only includes 64 3D MR images) are hard to support the training of deep seg-
mentation model. Therefore, new methods need to be developed to address the
above challenges for the IVD segmentation.

Early studies on IVD segmentation [2–4] have been done by manually
extracted features, where these hand-crafted features are dependent on expert
knowledge that can be subjective and unreliable. Recently, with the develop-
ment of deep learning, many effective methods have been proposed in the field
of image segmentation. Lin et al. proposed RefineNet [5], which explicitly exploits
all the information available along the down-sampling process to enable high-
resolution prediction using long-range residual connections. Zhao et al. [6] pro-
posed PSPNet, which uses the pyramid pooling module to obtain multi-scale
features. Wang et al. [7] proposed HDC to reduce the gridding issue caused by
the standard dilated convolution operation with a simple and effective method.
In particular, Deeplabv3 and Deeplabv3+ proposed by Chen et al. [8,9] achieved
a better performance on the PASCAL VOC 2012 semantic image segmentation
dataset by using spatial pyramid pooling and dilated convolution.

Unlike natural images, medical images usually lack sufficient annotations to
differentiate images or pixels from multi-modality imaging devices [20]. In prac-
tice, it is difficult to collect a large number of annotated samples to train the seg-
mentation model. Because of the problem, the above methods have difficulty in
adapting to medical images. Recently, researchers have proposed multiple meth-
ods focused on the medical image segmentation. For example, Chen et al. [10]
proposed a 3D full convolutional network (FCN) for IVD localization and seg-
mentation. Li et al. [11] proposed a multi-scale and modality dropout-learning
framework to segment IVDs from four modality MR images. Zeng et al. [12] pro-
posed a deeply supervised multi-scale fully convolutional network, which uses a
multi-scale deeply supervised method to automatically segment and locate IVDs
and using transfer learning to improve the performance of the deep model. Liao
et al. [13] proposed a multi-task 3D FCN combined with a bidirectional recur-
rent neural network to automatically segment vertebrae from the CT images. In
addition, Zeng et al. [14] proposed a deeply supervised 3D fully convolutional
network to segment the proximal femur in 3D MR images. However, the prob-
lem of losing a lot of contextual information is still well unsolved due to the
excessive use of down-sampling. Meanwhile, with the number of network layers
increases, the parameters will also increase dramatically, which can increase the
computational complexity of the whole network.

Taking the above problems into account, this paper proposes a new frame-
work with fully dilated separable convolution (FDS-CNN) for the automatic
segmentation of IVDs, using small-sized training set from multi-modality MR
images. Firstly, we design a fully dilated separable convolution network that
replaces all standard convolutions with dilated separable convolution, and
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prevents the loss of contextual information by reducing the number of down-
sampling. At the same time, in the case of ensuring the segmentation perfor-
mance, the network parameters can be effectively reduced. Subsequently, to make
full use of the characteristics of multi-modality data, we propose a multi-modality
data fusion and augmentation strategy, which can increase the number of sam-
ples in a simple and effective manner, improving the generalization performance
of the network. Finally, by drawing on the idea of the attention model [15],
we use pre-processing networks to pre-segment the spine and make the network
more focused on the places of interest.

This paper is organized as follows. In Sect. 2, we present the proposed frame-
work in detail. Then, our framework is evaluated using the MICCAI 2018 IVD
Segmentation Challenge Data Set in Sect. 3. Finally, Sect. 4 draws the conclusion
and discusses future works.

Spine Segmentation

FDS-CNN

Input images Preprocessed image Segmented spine

Cropped imageSegmented IVDsSegmentation result

Fig. 1. Overview of the fully automated intervertebral disc segmentation framework.

2 Methodology

Figure 1 presents the overall framework for the automated IVDs segmentation. In
order to suppress the complex background interference of multi-modality data,
the framework mainly includes two parts, i.e., (1) segmenting the spine out
of the original images; (2) segmenting the IVDs using the FDS-CNN. Besides,
we propose a multi-modality data fusion and augmentation strategy which can
make full use of the characteristics of multi-modality data to effectively increase
the number of training samples. Accordingly, in this section, we first present
the method for spine segmentation, and then introduce our proposed FDS-CNN
structure in detail. Finally, we introduce the multi-modality data fusion and
augmentation strategy.
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2.1 U-Net for Spine Segmentation
According to Fig. 1, we notice that the original IVD MR image has complicated
backgrounds, which may influence the performance of our segmentation model.
In order to make the IVD segmentation more focused on the area of interest, we
first introduce a pre-processing network to segment the spine from the original
image. The network is based on U-net [16] with BN [17] layers after each convo-
lution to speed up network convergence. U-net is a simple and effective semantic
segmentation network. It extracts high-level semantic information from images
through step-by-step down-sampling, and then restores the size of the image,
predicting the results step-by-step through up-sampling and skip connection.
Through the pre-processing network, spine images with the area of interests can
be obtained. Accordingly, before the segmentation of IVDs, pre-segmentation
of spine regions mainly has two advantages, i.e., (1) the subsequent FDS-CNN
only need to tackle the area of interest; (2) the computational complexity can
be greatly reduced. This idea is similar to the widely used attention model [15]
in the field of natural language processing. The model puts more attention on
the area of interest to obtain more details of the target and ignore other useless
information.

2.2 Convolutional Network with Fully Dilated Separable
Convolution

After the pre-segmentation of spine regions, we use the FDS-CNN for the accu-
rate segmentation of IVDs. The FDS-CNN first employs an improved Xcep-
tion [18] as the encoder network to extract high-level semantic information,
extracting multi-scale features based on a spatial pyramid model. Then, it can
recover the lost context information using a skip connection. Compared to previ-
ous works [6,8,9], the propose framework has multiple improvements in the cor-
responding modules to adapt the IVD segmentation task with only small-sized
training set. In particular, our network replaces all convolutions with dilated sep-
arable convolutions, which can greatly reduce the number of parameters of the
network and effectively extend the field of receptivity. Moreover, our network
does not need any pre-training, which can still achieve superior performance
with small-sized training set. The following of this section will introduce the
implementation details of our network.

Dilated Separable Convolution. The main idea of dilated convolution is
to insert “holes” (zeros) between pixels to enlarge the field of convolutional
kernels, which enable dense feature extraction in deep CNNs [7]. Dilated convo-
lution allows us to explicitly control the resolution at which feature responses
are computed within deep convolutional neural networks [8]. It can effectively
expand the field of view in each filter without increasing parameters and com-
putational complexity. We can obtain enough receptive fields through dilated
convolution without down-sampling. Therefore, the loss of context information
due to down-sampling can be well avoided. Besides, depthwise separable convolu-
tion separates the standard convolution into depthwise convolution followed by a



70 H. Wang et al.

onnection

Middle flow

+

Sep Conv 32, 3x3

Dilated Sep Conv 64 rate 1

Sep Conv 32, 3x3

Sep Conv 64, 3x3, stride 2

Dilated Sep Conv 64 rate 2

Dilated Sep Conv 64 rate 5

 Conv 64, 1x1

Dilated Sep Conv 128 rate 1

Dilated Sep Conv 128 rate 2

Dilated Sep Conv 128 rate 5

 Conv 128, 1x1

Images 

Dilated Sep Conv 256 rate 1

Dilated Sep Conv 256 rate 2

Dilated Sep Conv 256 rate 5

 Conv 256, 1x1

+

+

Dilated Sep Conv 256 rate 1

Dilated Sep Conv 256 rate 2

Dilated Sep Conv 256 rate 3

Dilated Sep Conv 256 rate 1

Dilated Sep Conv 384 rate 5

Dilated Sep Conv 384 rate 2

+

 Conv 384, 1x1

Dilated Sep Conv 384 rate 1

Dilated Sep Conv 384 rate 2

Dilated Sep Conv 512 rate 5

Image Pooling

Conv 128, 1x1

Dilated Sep Conv 128 rate 1

Dilated Sep Conv 128 rate 3

Dilated Sep Conv 128 rate 7

Dilated Sep Conv 128 rate 9

 Conv 128, 1x1 Conv 64, 1x1

+

2 * Sep Conv 64, 3x3

Conv 1, 1x1

Upsample by 2

Prediction

+

+
Repeat 8 times

+

Fig. 2. The structure of the convolutional network with fully dilated separable convo-
lution (FDS-CNN), including modified Xception, ASPP, skip connection, etc.

pointwise convolution. Specifically, the depthwise convolution performs a spatial
convolution independently for each input channel, while the pointwise convolu-
tion is employed to combine the output from the depthwise convolution [9]. This
decomposition can greatly reduce the computational complexity of the model.
In our designed FDS-CNN architecture, we use 3× 3 depthwise separable convo-
lutions, which can not only have less computation complexity (i.e., 8 to 9 times
less) than the standard convolution, but also maintain similar performance as
the standard convolution [19]. Our dilated separable convolution combines the
depthwise separable convolution and the dilated convolution. The dilated sepa-
rable convolution embeds the characteristics and inherits the advantages of these
two kinds of convolutions. For example, the dilated separable convolution can
be treated as a dilated convolution, effectively increasing the receptive field of
the network, which also has fewer parameters in comparison with the standard
convolution.
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Modified Xception. The Xception model [18] has achieved excellent perfor-
mance in image classification and segmentation tasks. Recently, Chen et al. [9]
applied the modified Xception model to address the semantic segmentation and
achieve excellent performance. In our solution, we continue to make further three
changes to the Xception model and apply it to address the IVD segmentation
task. First, we replace all convolutions in the Xception model with dilated sepa-
rable convolutions and use only one down-sampling in the entire model. Second,
in order to further improve the computation efficiency, we reduce the number of
all feature maps by half. Third, in order to effectively expanding the receptive
field, the dilated separable convolutions in each layer are assigned with different
rates. The modified Xception is shown in Fig. 2.

Additionally, we adopt other two strategies to further improve the perfor-
mance of FDS-CNN, i.e., Atrous Spatial Pyramid Pooling (ASPP) [6,9] and
Skip Connection. As shown in Fig. 2, we replace all convolutions in the spatial
pyramid structure with dilated separable convolutions, where the rate of dilated
separable convolutions in each layer can be modified accordingly. Subsequently,
the 1× 1 convolutions are applied to three low-level features, which are the out-
put of the third layer convolution, the output of the enter flow and the output
of the middle flow, respectively. Then they are concatenation with high-level
features. After the concatenation, we apply two 3× 3 separable convolutions
and one 1× 1 convolution to refine the features followed by a simple bilinear
upsampling with the factor of 2.

2.3 Multi-modality Data Fusion and Augmentation
For the small-sized training set, the segmentation model is easy to over-fitting.
For this problem, a general solution is to increase the number of samples by
rotating each image, thereby improving the generalization performance of the
model. Although this method can well increase the number of samples, it cannot
use the characteristics of multi-modality data itself. Therefore, we develop a new
method for multi-modality data fusion and augmentation. According to Fig. 3,
from (a–b), it can be seen that multi-modality images have different modalities
for the same object (IVD). However, the shape and position of objects inside
the image have not changed. Therefore, it is possible to use the feature of multi-
modality data to construct new modality. From (e–h), by simply adding the
corresponding pixel values from the original two modality images, images with
new modality can be obtained. This strategy can not only increase the num-
ber of samples, but also fuse different modalities to better represent IVDs. We
will verify the performance of the multi-modality data fusion and augmentation
strategy in the experimental part.

3 Experiments

3.1 Experimental Setting

We evaluated the proposed framework on the dataset from MICCAI 2018 Chal-
lenge of Automatic Intervertebral Disc Localization and Segmentation [21]. The
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Fig. 3. Schematic diagram of multi-modality data fusion and augmentation strategy.

data set contains 3D images from 8 patients scanned using a 1.5-Tesla MRI scan-
ner at two different times. In addition, each 3D multi-modality MRI data set
contains four aligned high-resolution 3D volumes: in-phase (inn), opposed-phase
(opp), fat and water (wat) images. There are in total 64 high-resolution 3D MRI
volume data. For each IVD, ground truth labels are provided in the form of
binary mask with pixel level annotation.

For the data pre-processing , the multi-modality fusion and augmentation
strategy discussed above is used to create a variety of sample data, which can
significantly increase the number of training samples. Meanwhile, traditional
data augmentation strategies such as image rotation are also employed. In order
to improve the performance of the model when dealing with blurred imaging
samples, we randomly selects images before the image input network, i.e., ran-
domly selecting 0%–15% of pixels of the image, assigning random-sized values.
With the increasing training batches, each image has different levels of noise,
which can increase the diversity of the sample. Besides, each image is normal-
ized using min-max normalization.

For the spine segmentation, in order to reduce the influence of complex back-
grounds, we employ a pre-segmentation network to extract spine regions from
original images. Spine segmentation network adopt U-net model [16] that has
widely applied in image segmentation. After the spine segmentation, we cut the
image into 112× 128 sub-maps to train the deep neural network. Additionally,
the FDS-CNN outputs the predicted image of the same size (112× 128) as the
training data, where this paper uses the splicing method to restore the predicted
image to its original size. In the training of FDS-CNN, we employ the open
source architecture from Keras, using the Adam optimization function, where
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the learning rate are set as 1E-4, with the batch size of 16. Our deep neural net-
works are implemented using Keras on a Linux system with two Nvidia 1080Ti
GPUs.

3.2 Evaluation

This paper uses cross-validation to evaluate the performance of the framework.
Due to the multi-modality images are scanned at different times, most images
from same patients are similar which cannot be set as training and testing data
respectively. Therefore, for the cross-validation, the training and testing data
will not include the multi-modality images of the same patient. The data set
contains in total 16 image data from 8 patients. For each round of validation,
12 image data from 6 patients are selected for training, and the remaining 4
image data are used for testing. In this paper, four groups of cross-validation are
performed in each experiment, and dice overlap coefficients are used to evaluate
the prediction results of the framework. In the following, we first evaluate the
effectiveness of the proposed FDS-CNN, and then verify the performance of the
multi-modality data fusion and augmentation strategy.

Table 1. Performance comparison of our network and two benchmarks on the IVD
segmentation dataset under different modalities.

Wat Fat Inn Opp Mean

Deeplabv3+ [9] 0.8309 0.8124 0.8257 0.8243 0.8235

U-net [16] 0.9107 0.8651 0.9051 0.8992 0.8953

FDS-CNN 0.9111 0.8853 0.9055 0.9062 0.9021

Effectiveness of FDS-CNN. To validate the effectiveness of the proposed
FDS-CNN, we compare our approach with 2 benchmark methods: U-net [16]
and Deeplabv3+ [9]. For these two benchmarks, as the scanned MRIs are single-
channel grayscale images, the input dimensions of networks are modified accord-
ingly. Meanwhile, we reduce the number of channels in the convolutional layers,
adding the BatchNormal layer to accelerate the convergence of U-net. All three
networks using the same training and augmentation strategies. Table 1 records
the dice score of three comparative methods. According to Table 1, the proposed
FDS-CNN achieves a mean dice overlap coefficient (MDOC) of 90.21%, where the
U-net and Deeplabv3+ only achieve MDOC of 89.53% and 82.35%, respectively.
The results demonstrate that the proposed FDS-CNN can achieve better perfor-
mance in the IVD segmentation task with small-sized training set. Meanwhile,
we notice that the accuracy of segmentation achieved by Deeplabv3+ is obvi-
ously less than that of U-net. This indicates that Deeplabv3+, which performs
well in natural image segmentation tasks, can not well adapt the small-sized
medical image data sets. Figure 4 illustrates a randomly selected example with
corresponding segmentation results using the proposed FDS-CNN. According
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to Fig. 4, our network can achieve the segmentation for IVDs with reasonable
results. It is worth pointing out that the accuracy of fat modality in these net-
works is lower than that of other modalities. This is because the IVDs in the fat
modality have low resolution, which can reduces the accuracy of segmentation.

Table 2. The performance of the fused modalities on the trained model.

Wat+Opp Fat+Opp Wat+Inn Inn+Opp Mean

0.9122 0.9086 0.9121 0.9140 0.9117

Table 3. Results without multi-modality data fusion and augmentation.

Wat Fat Inn Opp Mean

0.9096 0.8818 0.8984 0.8975 0.8973

Fig. 4. Examples of segmentation results from the validation data set. From left to
right, they are wat, fat, inn, and opp modalities. The second row is their segmentation
results (left) and the corresponding ground truth (right).

Validation of Multi-modality Data Fusion and Augmentation. We
adopt two protocols to validate the effectiveness of the proposed multi-modality
data fusion and augmentation strategy. We first use the new modality to test
the segmentation accuracy in the model, and then testing the performance of
the model without using multi-modality data fusion and augmentation strategy.
According to Table 2, the fused new modalities achieves the MDOC of 91.17%,
which is better than the original results, i.e., 90.21% as shown in Table 1. More-
over, the segmentation accuracy of each new modality is also higher than the
original modality. In particular, the fat+opp modality is 2.33% higher than the
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fat modality result, which can be treated as a preferable solution for the problem
of low resolution of the fat modality. This validates that the proposed multi-
modality data fusion and augmentation strategy can effectively fuse different
features from multiple modalities to improve the accuracy of segmentation. As
illustrated in Table 3, the model only achieves MDOC of 89.73% when the multi-
modality data fusion and augmentation strategy was not used. Moreover, the
segmentation accuracy of each modality is also lower than the results in Table 1.
This shows that the multi-modality data fusion and augmentation strategy can
provide rich multi-modality data for the network to support the learning of dis-
criminant information, thereby improving the segmentation results of IVDs.

4 Conclusion

In this paper, a new framework with fully dilated separable convolution (FDS-
CNN) is proposed for the IVD multi-modality image segmentation with small-
sized training set. Compared with other segmentation networks, the proposed
FDS-CNN can achieve superior performance in small-sized training set without
pre-training. By investigating the information from multi-modality image data,
this paper proposes a novel solution for the multi-modality image augmentation,
i.e., multi-modality data fusion and augmentation strategy, which can increase
the number of samples and improve the performance of the segmentation model.
Experiments on MICCAI 2018 IVD Localization and Segmentation Challenge
demonstrate the effectiveness and superiority of the proposed framework, in
comparison with other state-of-the-arts.
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