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Abstract. Segmentation of structures in clinical images is a precursor to
computer-aided detection (CAD) for many musculoskeletal pathologies.
Accurate CAD systems could considerably improve the efficiency and
objectivity of radiological practice by providing clinicians with image-
based biomarkers calculated with minimal human input. However, such
systems rarely achieve human-level performance, so extensive manual
checking may be required. Their practical utility could therefore be
increased by accurate error estimation, focusing manual input on the
images or structures where it is needed. Standard techniques such as the
minimum variance bound can estimate random errors, but provide no
way to estimate any systematic errors due to model fitting failure.

We describe the use of multiple, independent sub-models to estimate
both systematic and random errors. The approach is evaluated on ver-
tebral body segmentation in lateral spinal images, demonstrating large
(up to 50%) and significant improvements in the accuracy of error clas-
sification with concurrent improvements in annotation accuracy. Whilst
further work is required to elucidate the definition of “independence” in
this context, we conclude that the approach provides a valuable compo-
nent for appearance model based CAD systems.

1 Introduction

Standard statistical techniques exist to estimate errors on model fitting pro-
cesses. For example, in maximum likelihood or equivalent techniques such
as cross-correlation, the covariance matrix of the fitted model parameters is
bounded by (e.g. [2])
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where L is the likelihood function, r, s index a vector of parameters θ, and the
equality on the right-hand side is true in the large N limit. This is known as the
Minimum Variance Bound (MVB) and has been successfully applied to estimate
errors on registration, patch-matching and landmark localisation algorithms (e.g.
[5,9,15]). However, Eq. 1 shows that the covariance matrix on the fitted model
parameters is bounded by the width of the log-likelihood function about the
fitted optimum. It is not sensitive to any systematic error introduced by unmod-
eled modes of variation in the data, or fit failure due to convergence on a local
optimum, as shown in Fig. 1. In general, without either a prior distribution on
the systematic errors or a perfect model, there is no way to estimate systematic
errors since they cannot be randomly sampled.

(a) (b)

Fig. 1. (a) Unmodeled modes of variation in the data introduce a biasing parameter α
and so a prior term p(α|θ, I) where I is the query image and θ the model parameters.
(b) Use of a local, rather than global, optimiser may allow fitting to converge on a
local optimum. In either case, the minimum variance bound estimates the accuracy
with which a given optimum has been found, which is dependent on the width of that
optimum (σbiased or σlocal) about its mean (μbiased or μlocal), but is not sensitive to
the systematic error σsystematic.

It is often the case in medical image analysis that the most significant errors
are systematic, and induced by the use of imperfect models that cannot account
for all of the non-noise variation in the data. Such models can be considered
as existing on sub-spaces in the space of the perfect model i.e. they span some,
but not all, of the modes of variation of that model, and each has a systematic
error on a given query image as a result. However, if multiple models could
be produced, independent in the sense that they exist on different sub-spaces,
their results would include random samples from the population of all possible
systematic errors. The standard techniques for random error analysis could then
be applied to estimate the systematic errors. This approach has been successfully
applied to landmark annotation for Computed Tomography (CT) images using
patch-based rigid registration [6]. Here, we explore its application to appearance
model segmentation of musculoskeletal images.
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As an exemplar task, Random Forest Regression Voting Constrained Local
Models (RFRV-CLMs) [13] were applied to segment vertebrae in Dual-Energy
X-ray Absorptiometry (DXA) spinal images, to support classification of osteo-
porotic vertebral fractures (VFs). This combination of method and application
had several advantages. Osteoporosis is a common, degenerative disease that
increases the risk of fragility fractures, which most frequently occur in the verte-
brae, wrists and hips. Approximately 40% of postmenopausal Caucasian women
are affected, increasing their lifetime fragility fracture risk to as much as 40%
[14]. The impact of the disease is expected to grow as the population ages [7].
Early identification of osteoporotic VFs is therefore clinically important. How-
ever, the false negative rate for VF identification is high. A recent audit at a
large UK hospital revealed a reporting rate of 36% on CT images [12], and simi-
larly low rates have been reported elsewhere [1]. VF identification on CT images
may be opportunistic. However, a recent multi-centre, multinational prospective
study on VF reporting for lateral radiographs found a false negative rate of 34%
[8]. The potential utility of computer-aided diagnostic (CAD) systems for VF
identification in clinical images is therefore high. RFRV-CLMs have previously
been applied to this task in both DXA [3] and CT [4] demonstrating state-of-the
art annotation and classification accuracy. However, these publications showed
that model fitting failure limited classification accuracy. A reliable method to
identify such errors would considerably improve the practical utility of VF CAD
systems based on RFRV-CLMs, avoiding much of the need for manual inspection
and/or correction of the results.

2 Method

Random Forest Regression Voting Constrained Local Models. In the
interests of brevity we provide only a summary of the RFRV-CLM and refer the
reader to [13] for full details. RFRV-CLMs match a series of landmark points,
described by a statistical shape model (SSM), to a query image. They consist
of a SSM and a set of independent, local models of the image intensities around
each point. The latter are aligned to the query image independently, with the
SSM providing a global constraint. The training data consists of a set of images,
each annotated with n homogeneous points xl, where l = 1...n. The sets of points
are first aligned to remove non-shape variation using e.g. a similarity transfor-
mation. The shape in each aligned image is represented as a vector comprising
the concatenated coordinates of the points in that image. Principal Component
Analysis (PCA) is applied to these vectors to extract the main modes of varia-
tion P. A linear model is then constructed giving xl as the mean point position
x̄l in a suitable reference frame, plus some proportion b of each of the modes of
variation

xl = Tθ(x̄l + Plb + rl) (2)

where Pl is the sub-matrix of P relevant to l, and b are referred to as the shape
parameters. Tθ is the transformation, with parameters θ, from the reference
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frame to the query image, and rl allows small deviations from the model. Fitting
to a query image I proceeds by optimising a quality of fit Q over parameters
p = {b, θ, rl}, where

Q(p) = Σn
l=1Cl(Tθ(x̄l + Plb + rl)) s.t. bTS−1

b b ≤ Mt and |rl| < rl (3)

The threshold Mt is a shape constraint and is applied to the Mahalanobis dis-
tance of b, using the covariance matrix Sb of the b from the training data, and
rl is a threshold on the residuals. The cost images Cl are produced by Random
Forest (RF) regression voting. For each l, patches are sampled from the image
at a set of random displacements from xl in the reference frame, Haar-like fea-
tures are derived from the patches, and a RF regressor is trained to predict
the displacement from the features. During fitting each RF is scanned across
the image around the current estimate of the point location and the predicted
displacements are entered into a voting array Cl.

Data Collection and Manual Annotation. The dataset used in the eval-
uation consisted of 320 DXA VF assessment (VFA) images scanned on various
Hologic (Bedford MA) scanners, with manual annotation of 33 landmarks on
each vertebra from T7 to L4; see Fig. 2 for example images. Each vertebra was
also classified by an expert radiologist into one of five groups (normal, deformed
but not fractured, and grade 1 (mild), 2 (moderate), and 3 (severe) fractures as
defined by Genant et al. [10].

RFRV-CLM Training and Fitting. The training procedures and parameters
described in [3] were used. RFRV-CLMs were trained to model landmarks on
triplets of neighbouring vertebrae, using training data from all levels between T7
and L4 such that the models could fit any level. Two-stage, coarse-to-fine models
were used with two trees in the first stage and 15 in the second. Fitting to query
images was initialised using manual annotations of vertebral body centroids.
The shape constraint in Eq. 3 was removed in the last iteration of second-stage
fitting to avoid correlated errors between the landmarks. The model was fitted
to all triplets of centroids between T7 and L4, and landmarks from the central
vertebrae of each (plus the extremal vertebrae on the first and last triplets) were
concatenated to produce a segmentation of the vertebrae.

Error Estimation Methodology. The evaluation of the proposed approach to
systematic error detection was based on comparing two model-training regimes.
The first, referred to below as “multi-model”, evaluated error estimators based
on multiple, independent models. Weak independence was induced by training
models on independent data sets; see Sect. 4 for comments on potential routes
to formally inducing strong independence. The data set was divided into eighths
and models were trained on each. Therefore, seven models trained on indepen-
dent sets of images were available to fit each query image, producing seven
independent estimates xj for each landmark location. The final annotation was
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produced by taking the centroid xc of the multiple estimates. An error estimator
sensitive to any fit failures across the set of models was calculated as the root-
mean-square (RMS) of the Euclidean distances between the individual estimates
and their centroid, and is referred to below as RMS goodness-of-fit (RMSGOF)

xc =
1
k

k∑

j=0

xj RMSGOF =

√
√
√
√

1
k

k∑

j=0

(xj − xc)2 (4)

For comparison, a standard four-fold cross validation was also performed
and is referred to below as “single model”. Here, models were trained on 3/4 of
the data and tested on the remaining 1/4, such that one model was tested on
each query image. Since RFRV-CLMs contain regressors capable of predicting
the location of the landmark given patches of image data, a simple goodness-
of-fit measure sensitive only to random errors was produced by applying the
regressor at the optimised point position to estimate the residual; this is referred
to below as RGOF (residual GOF). RGOF was also calculated for the multi-
model approach by taking the mean of the RGOF from each of the multiple
model fits for a given point, and a combined GOF, or CGOF, was produced by
taking the product of the mean RGOF and the RMSGOF.

In both cases, the true error on the RFRV-CLM annotations was calcu-
lated as the Euclidean distance to the corresponding manual annotation. This is
referred to below as point-to-point, or P2P, error. The RF parameters were kept
consistent between the single model and multi-model approaches. In addition,
multi-model training used all vertebral triplets from each training image whilst
single-model training used only one; since T7 to L4 annotation provided eight
triplets per image, this ensured that the number of training samples used for
each model was consistent across both approaches.

Vertebral Fracture Classification. VF classification was performed using a
simple approach based on six-point morphometry [11]. The anterior Ha, middle
Hm, and posterior Hp heights of each vertebral body were calculated as the
Euclidean distances between the relevant landmark pairs. The predicted pos-
terior body height Hp′ was also calculated from the posterior heights of the
closest four annotated vertebrae by taking the largest of the four values, since
fractures decrease vertebral height. Three ratios were then calculated to mea-
sure the relative height reductions at the anterior (wedge ratio, Ha/Hp), middle
(biconcavity ratio, Hm/Hp) and posterior (crush ratio, Hp/Hp′) positions. The
data were whitened by subtracting the median and dividing by the square root
of the covariance matrix, estimated using the median absolute deviation. Nor-
mal vertebrae predominated, and so this was equivalent to whitening to the
mean and standard deviation of the normal class, without using manual clas-
sifications. A simple classifier was then constructed by placing a threshold tc
on the Euclidean distance from the origin to separate the data into fractured
and non-fractured classes, the latter including both normal and deformed ver-
tebrae. Error estimates for classification were derived from RMSGOF, CGOF
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and RGOF by applying standard error propagation to the above calculation to
produce a scaled estimate of the error HGOF on the length of the vector defined
by the three whitened height ratios Rw, Rb and Rc, and calculating the ratio of
this estimate to the distance of the data point from the decision boundary

ClassGOF =
HGOF

|tc − √

R2
w + R2

b + R2
c |

(5)

3 Evaluation

Figure 2 shows example images and serves as a flow diagram illustrating the
method. Taking the original images (a, f) as input, together with manual anno-
tations of vertebral body centres, RFRV-CLMs are fitted to produce high-
resolution annotations of the vertebral bodies as a precursor to VF classification.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 2. Examples of image annotation using single and multiple models. (a, f) Original
images. (b, g) Manual annotations of T7 to L4. (c, h) Automatic annotation using a
single RFRV-CLM. (d, i) Automatic annotations from multiple, independent models.
(e, j) Centroids of the multiple estimates for each landmark.
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Comparing manual annotations (b, g) to automatic annotations produced by a
single model (c, h), it can be seen that some vertebra (L4 in (c) and T7 in (h))
are poorly fitted, leading to the appearance of reduction in anterior vertebral
body height that leads to misclassification of these normal vertebrae as fractured.
Since these errors are systematic, rather than random, techniques based on the
MVB will not identify them. However, if multiple, independent sub-models are
fitted (d, i), they can serve to sample the systematic errors. The centroids of the
multiple estimates for each point (e, j) serve as the final annotation.

The first stage of the evaluation focused on estimating the mean P2P error
across each vertebral body. Figure 3 shows scatterplots of the mean single-model
RGOF and multi-model RMSGOF for each vertebra against the vertebral mean
P2P error. The correlation coefficient was 0.54 for the vertebral mean single
model RGOF, 0.50 for the mean multi-model RGOF, 0.63 for the mean RMS-
GOF, and 0.67 for the mean CGOF, indicating that the RMSGOF is more
strongly correlated to the P2P error than the RGOF. The CGOF resulted in
a small improvement in correlation, indicating that there is some independent
information between the RGOF and RMSGOF.

To provide a more quantitative interpretation of the various error estimators,
they were used to construct binary classifiers. The ground truth classification for
each vertebra was produced by imposing a threshold on mean P2P error, set to
the 95th percentile of the error distribution, corresponding to 2.2 mm. Figure 4
shows ROC curves produced by applying a threshold to the error estimators
and comparing the classification to the ground truth. Error estimators based
on multiple models resulted in a large and significant increase in classification
accuracy, e.g. raising the precision at 50% recall from 42.1% for a single-model
RGOF to 59.3% for RMSGOF and 63.8% for CGOF.

(a) (b)

Fig. 3. Goodness-of-fit (GOF) measures vs. the P2P errors on automatically annotated
points: (a) mean single-model RGOF; (b) RMSGOF. Each graph also shows a linear
fit to the data.

The results discussed so far indicate that the use multiple, independent sub-
models is helpful in error estimation. However, the effect on the accuracy of
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(a) (b)

Fig. 4. ROC curves for binary classifiers of mean vertebral error using various error
estimators. The ground truth was provided by a threshold on the mean vertebral P2P
error corresponding to the 95th percentile of its distribution.

point localisation must also be evaluated. Since each of the multiple sub-models
is trained on a smaller set of images, it might be expected that the resultant
regressors would provide point location estimates with larger errors. In prac-
tice, the opposite was found. Figure 5 shows CDFs of the mean vertebral P2P
errors divided by vertebral classification, for both single and multiple models.
In general, multi-model annotation proved to be slightly more accurate than
single model annotation, although the differences were small. This also accounts
for the difference in accuracy between single and multi-model RGOF in Fig. 4;
the multi-model annotation makes fewer errors and so they are more difficult to
identify. However, Fig. 6 shows ROC curves for a six-point morphometry clas-
sifier applied to both the manual annotations and automated annotations from
single and multi-models. Multi-model VF classification was significantly more
accurate, approximately halving the difference compared to classification from
manual annotations.

To investigate this difference more thoroughly, several additional model train-
ing strategies were applied, and the results are also shown in Fig. 6. As described
in Sect. 2, in the experiments described up to this point single models were
trained on one vertebral triplet from each of the training images whilst, when
training multiple models, the training images were divided into eighths and one
model was trained on each, using all of the vertebral triplets. Furthermore, the
dimensions of the RFs were consistent, with two trees in the first stage and
fifteen in the second stage. Therefore, the number of trees and training sam-
ples for each individual model was consistent but, as an ensemble, the multiple
sub-models had seven times more trees and training samples available. To test
whether this accounted for the difference in accuracy between the single and
multi-model approaches, additional single models were trained with all verte-
bral triplets from all images, and with increased numbers of trees in the first
and second stages, and the results are shown in Fig. 6. Increasing the training
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(a) (b)

Fig. 5. Cumulative distribution functions of the vertebral mean P2P error on RFRV-
CLM annotations using a single model (a) and multiple models (b), for each vertebral
classification.

sample approximately halved the difference between the single and multi-model
approaches, and increasing the number of trees in each stage produced further
but smaller increases in accuracy. However, the single model still failed to achieve
the accuracy of the multi-model approach. Conversely, the size of the model on
disk increased dramatically. For example, the first stages of the multi-models
were on average 290 MB; single-model first stages were 230 MB for two trees and
one triplet per image and, when using all triplets, 1.2 GB for 2 trees and 5.0 GB
for 8 trees, making the latter impractically large. This indicates that dividing
training samples between multiple, independent models provides a more efficient
way in which to use large data sets. The single models used in the remaining
experiments reverted to the training strategy described in Sect. 2.

The final stage of the evaluation focused on identifying errors in the 6-point
morphometry fracture classification. Classification and error estimation were
performed as described in Sect. 2. A classification threshold tc (an operating
point in Fig. 6) giving 90% sensitivity was selected. A second threshold was
applied to the ClassGOF (derived from CGOF) to classify the VF classification
as accurate or erroneous. The ground truth was provided by the manual classi-
fication of each vertebra, and the threshold on ClassGOF was varied to produce
the ROC curves shown in Fig. 7(a).

Comparison of the results from single and multi-model error estimation for
VF classification is complicated by the fact that, as shown in Fig. 6, multi-
model fracture classification is more accurate, and so the number of errors to be
detected is smaller. However, in contrast to the results for classifying errors
on vertebral mean errors, the multi-model approach did not provide signifi-
cantly more accurate error estimation for VF classification compared to the
single-model approach. To illustrate why this occurred, Fig. 8 shows the distri-
butions of multi-model annotation error, across all vertebrae and images, for
each of the 33 landmarks. However, instead of P2P error, the figure shows the
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(a) (b)

Fig. 6. ROC curves of osteoporotic VF classification using 6-point morphometry,
for both manual landmarks and various automated annotations; (b) shows a detail
from (a).

(a) (b)

Fig. 7. (a) ROC curves showing the accuracy of error classification on the results
of VF classification using 6-point morphometry. (b) ROC curves of osteoporotic VF
classification using 6-point morphometry, for both manual landmarks, the single and
multi-model automatic annotations, and these automatic annotations after filtering out
results detected as erroneous by an error classifier.

point-to-curve (P2C) errors i.e. the minimum Euclidean distance between each
point and a piecewise-linear curve through the manual annotations. Large P2C
errors, where the points move away from the vertebral body edge, are predom-
inantly found on the anterior side and the pedicle, whilst the points used in
VF classification are more accurate, implying they are less subject to fit fail-
ure. Therefore, mean vertebral P2P error estimation benefits from the use of
RMSGOF and the sensitivity of the technique to systematic error/fit failure,
whilst error estimation for VF classification does not. However, the multi-model
approach did not result in significantly worse error estimation.
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(a) (b)

Fig. 8. (a) Box-and-whisker plots of the point-to-curve errors on the multi-model cen-
troid estimates of each point. The points shown in red are those used to estimate
heights for fracture classification, as shown in (b). (Color figure online)

To provide a more quantitative interpretation of the use of single and multi-
model error estimation for VF classification, Fig. 7(b) shows ROC curves of the
6-point morphometry fracture classifier applied to the manual, single and multi-
model annotations, and to the single and multi-model annotations after removal
of all vertebrae that were classified as inaccurate by the error classifier. This
reflects the use of the error estimation as a component of a CAD system, iden-
tifying potentially inaccurate classifications for manual checking and correction.
The threshold used for error classification was set to the operating point that
gave 10% false positive rate in Fig. 7(a). When combined with error classifica-
tion, single-model fracture classification was more accurate than multi-model
classification without error classification, and multi-model fracture classification
was more accurate than classification based on manual annotations. At an oper-
ating point of 90% sensitivity in the filtered, multi-model ROC curve, fewer than
20% of the vertebrae were labeled for manual inspection and only 5.65% of the
fractured vertebrae were misclassified both as normal and accurate i.e. 94.35%
of fractured vertebrae were either correctly classified or identified as inaccurate.

4 Conclusion

The use of shape and appearance models to segment structures in clinical images
is well established and has been proposed as the basis for clinical decision sup-
port systems for a number of musculoskeletal pathologies. However, these sys-
tems rarely achieve human-level accuracy. Reliable estimates of the errors on
the results would significantly increase their practical utility by highlighting the
images or structures requiring human input. However, this requires error estima-
tion techniques sensitive not only to random errors but also to systematic errors
such as model fitting failures.

This work has demonstrated the use of multiple, independent sub-models
as a route to estimation of systematic errors on appearance model fitting. The
underlying approach is not novel but we believe that this is the first time it
has been applied to appearance models. Using vertebral body segmentation and
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osteoporotic VF classification in DXA images as an example, the approach was
shown to be as accurate as an RF regressor in estimating random errors, but
significantly more accurate in estimating systematic errors. The use of multiple
sub-models also resulted in improvements in annotation accuracy by allowing
more efficient use of large training sets. The combination of these effects allowed
multi-model VF classification based on 6-point morphometry with error filtering
to exceed the accuracy of classification from manual annotations whilst rejecting
fewer than 20% of the vertebral segmentations, implying that it could have
practical utility in appearance model based CAD systems.

The work described here acts as a proof-of-concept but is preliminary. For
example, we have not explored the variations in annotation and error estimation
accuracy with varying numbers of sub-models. More significantly, the definition
of independence of the sub-models was not explored. Some degree of indepen-
dence was ensured by using independent training sets for each model. However, a
true definition of independence would require that each model existed on a sep-
arate sub-space of the shape and appearance space. Independence might there-
fore be maximized by permuting the assignment of training samples to models
to maximize the distances between the sub-spaces as measured using the Grass-
manian. In the case of spinal images, constraints would be required to ensure
this did not separate training samples by vertebral level and produce sub-models
that could not fit the whole spine. We intend to explore this in future work.
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