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Abstract. We describe a method to automatically predict scoliosis in
Dual-energy X-ray Absorptiometry (DXA) scans. We also show that
intermediate representations, which in our case are segments of body
parts, help improve performance. Hence, we propose a two step process
for prediction: (i) we learn to segment body parts via a segmentation
Convolutional Neural Network (CNN), which we show outperforms the
noisy labels it was trained on, and (ii) we predict with a classification
CNN that uses as input both the raw DXA scan and also the intermedi-
ate representation, i.e. the segmented body parts. We demonstrate that
this two step process can predict scoliosis with high accuracy, and can
also localize the spinal curves (i.e. geometry) without additional super-
vision. Furthermore, we also propose a soft score of scoliosis based on
the classification CNN which correlates to the severity of scoliosis.

1 Introduction

Scoliosis is an abnormal sideways curvature of the spine typically occuring prior
to puberty and affects approximately 1.1% to 2.9% of children [12]. While most
cases are mild, stablizing over time and presenting few symptoms, some children
develop severe deformaties that can cause lifelong disability and pain. Scoliosis
can also cause back pain [1] and in rare cases can cause respiratory failure [8]. It
is not currently possible to determine prognosis at the onset of disease and hence
children with scoliosis are monitored with repeated X-Ray imaging to determine
whether the disease is stable or progressing. While accepted as the standard
of care, the use of repeated X-Ray imaging on children with the associated
radiation dose is far from ideal. Moreover, the radiation dose also precludes its
use in population based epidemiological studies to better understand disease
progression and develop future tools to predict prognosis and for screening.

DXA Scans: The use of DXA imaging for diagnosis and monitoring of scolio-
sis has been proposed as an alternative to X-Ray due to its very low radiation
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dose compared to spinal X-Rays (0.001 mSv vs. 1.5 mSv) and widespread avail-
ability [12]. DXA scans, typically used to measure bone mineral density in the
management of osteoporosis, are whole body scans acquired in a line scanning
manner from the top of the head to the bottom of the feet. Two X-Ray sources
at different energy levels are used to create a pair of absorption images which
are then post-processed to produce quantitative bone mineral density images.
While detection of scoliosis using DXA has been shown to be feasible and accu-
rate, the manual technique proposed by [12] is labour intensive and requires
careful adherence to the prescribed analysis protocol for accurate results. That
being said, the method has proven to be quite successful in scoliosis research
e.g. [5]. The technique involves first localizing important body parts to establish
a reference coordinate system. These are then used for two purposes: (i) the
head and legs are used to determine the overall body position because incorrect
positioning can either mask or mimic the appearance of the condition, and (ii)
the curvature of the spine is used to assess for the presence of the condition;
defined to be when the curvature is ≥10◦. Our goal in this work is to automate
the process of scoliosis classification using DXA, based on [12]. An overview of
our approach is given in Fig. 1.

Fig. 1. Overview: a two stage approach where we take in a raw DXA scan and produces
segmentation of the body parts as an intermediate step, the outputs of which are used
in our classification stage.

Intermediate Representations: Our approach is based on a CNN driven
by a set of intermediate representations that attempt to mimic the intuition
of the underlying process of [12] described above. Our hypothesis is that such
intermediate representations, in this case soft-segmentation masks, can improve
classification performance, at least within the context of specific medical appli-
cations and when training with dataset sizes typically available in medical image
analysis. The intermediate representations embed prior knowledge on how scol-
iosis is imaged and assessed in the case of DXA, and provide important cues for
the network. In more detail, we provide several soft map segmentations of the
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key parts of the anatomy used in the DXA assessment process: the head and
legs, to determine the overall body position; and the spine, so that its curvature
can be used to assess for the presence and severity of the condition. In effect,
the use of such intermediate representations guides the learning process to focus
on important parts in determining scoliosis.

Related Work: Intermediate representations have recently been proposed as
a means to extract characteristic object representations in the MarrNet 2.5D
sketches by [14], and to take advantage of available training datasets for learn-
ing keypoints by [15]. Our use of intermediate representations differs from these.
There has been a lot of work done on whole body DXA scans e.g. manual seg-
mentation of body parts in [2] and modelling the shape of the body in [11]. There
is also work looking at the spine using DXA, more specifically segmenting the
vertebral body [9] but ours is the first system to segment the spine automatically
in whole body DXA scans.

Contributions and Overview: This paper makes several contributions: (i)
we present an automated method to predict scoliosis from DXA scans; (ii) we
demonstrate improved classification performance of scoliosis when DXA images
are augmented with application tuned intermediate representations; (iii) we illus-
trate how such intermediate representations may be robustly generated using a
network trained on “cheaply” obtained but noisy labels; and (iv) we propose that
our network can infer a continuous scale of the severity of scoliosis even though
it has been trained on binary labels. The remainder of the paper is organized
in two main sections: Sect. 2 describes the approach and process by which we
train a (segmentation) network for generating the intermediate representations.
Section 3 describes the network for predicting the scoliosis and related labels
from both the DXA scans and intermediate representations. The description of
the dataset and experimental results then follow in Sects. 4 and 5 respectively,
including a proposal for a scoliosis score, and evidence hotspots localizing the
curvature of the spine.

2 Segmentation

There are multiple body parts that can be seen in the whole body DXA scans, not
all are important for predicting scoliosis. Hence, a sensible approach to automate
prediction of scoliosis from these scans is to segment relevant body parts prior
to classification of scoliosis. The body parts we segment are: (1) head, (2) spine,
(3) pelvis, (4) pelvic cavity, (5) left leg, and (6) right leg. The spine is the
most important part since scolios is a disease of the spine while the others are
important for predicting positioning error (straight body vs. curved). Positioning
error also plays a part in determining scoliosis as the orientation of the head and
legs also affects curvature of the spine.
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Since the full body DXA scans are homogeneous, segmentation labels for
some parts of the body can be produced with a series of simple heuristics. These
labels, although not perfect, are good enough to train a segmentation CNN
and, as will be seen, in many cases the trained CNN produces visually better
segmentations. In the following sections we describe the stages of training the
segmentation CNN: first, generating (possibly noisy) segmentation labels using
simple heuristics from classical computer vision; and second, defining loss func-
tions and the architecture of the CNN.

2.1 Generating Segmentation Labels

For each scan, the head is first segmented via active contour around the head
region [3]. The pelvis is located by scanning each row of the image starting
from the bottom of the image until the bimodal intensity from the legs becomes
unimodal. Working through the body in this way, using a combination of active
contours and row based intensity modes, each of the body parts in turn can be
segmented. Note, this is only possible because of the uniform positioning of the
body adopted for the DXA scans. Around 90% of the scans are good though
rough. Examples of the segmentation masks from these simple heuristics can be
seen in Fig. 2.

Fig. 2. Segmentation labels: the segmentation labels created by simple heuristics.
Going from left to right: (1) the original image followed by segmentation masks of
the (2) head, (3) spine, (4) pelvis, (5) pelvic cavity, (6) right leg, and (7) left leg.

2.2 A CNN for Segmentation

The goal is to automatically segment the labelled body parts for each DXA
scan using a CNN. The segmentation CNN takes in a DXA scan as input and
produces six different channels with same dimension as the input, where each
channel corresponds to the six labelled parts as shown in Fig. 2. The design of
the network is inspired by the U-Net architecture with minor changes [10]. The
architecture of the network is given in Fig. 3.
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Fig. 3. Segmentation CNN: the network takes in a full body DXA scan and produces
segmentation masks for each of the six body parts. The network is based on the U-Net
architecture in that we have multiple skip connections from the earlier layers of the
network connecting to the later layers. /2 denotes a stride of 2. The output shows
the segmentation output overlaid on top of the input (in actuality the network only
produces the segmentation mask).

Segmentation Losses: We consider two different losses to train the segmen-
tation network. The first is a standard L2 loss:

Lseg =
N∑

n=1

‖yn − ŷn‖2 (1)

where yn is segmentation label (binary, y = 1 for parts containing a body part
and y = 0 otherwise), and ŷn is the output of the network for sample n. The
loss is also balanced by the amount of background and foreground pixels in the
batch during training.

Inspired by the method of which DXA scanners typically operate (similar to a
line scan camera); scan line by scan line or row by row of the whole scan, we also
propose a segmentation loss on a per scan line basis. This is done as follows: for
each scan line, the network is tasked to predict both the mid-point and thickness
of the labelled body part. The mid-point prediction can be viewed as a 128-way
classification task where each class is the point of the 128-dimensional scan line
(i.e. the width of the image), optimized via a standard softmax log loss:
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Lmid = −
N∑

n=1

⎛

⎝yn − log
128∑

j=1

eyj(xn)

⎞

⎠ (2)

where yj is the jth component of the Conv11 output for xn per scan line. The
raw output of this layer is a mid-point heatmap for each labelled body part. The
prediction of thickness for each scan line can be expressed as the summation of
the number of pixels belonging to a labelled body part e.g. a scan line with 8
spine pixels would have a thickness of 8 for the spine class. The same Conv11
output yj is used for predicting the thickness, optimized with L2 loss:

Lthick =
N∑

n=1

∥∥∥∥∥∥

128∑

j=1

yn −
128∑

j=1

H(ŷn)

∥∥∥∥∥∥

2

(3)

where H is the Heaviside step function which is approximated via a sigmoid,
used to binarize the activation of the Conv11 output:

H(x) =
1

1 + e−k(x−0.5)
(4)

where k controls the steepness (k = 10 in our case). To produce the segmentation
mask for each scan, we combine the predicted mid-point (max of the activation
of Conv11 for each scan line) and the thickness of a labelled body part for the
corresponding scan line (see Fig. 4). A segmentation mask can also be produced
directly after the Heaviside activation but we find this leads to be slightly worse
segmentation performance.

The Benefits of Using a Segmentation CNN: Although we are able to pro-
duce segmentation masks via very simple heuristic and classical computer vision
methods, in about 10% of cases there are erroneous segmentations especially
for a really difficult body part like the spine. As the goal is to build an end-to-
end system of scoliosis prediction, a CNN is much more suitable approach as it
learns, despite the noisy training labels, to correctly predict the segmentation
masks. Figure 5 shows examples of failure cases for the simple method against
output of a CNN on the test set. A second benefit of using the CNN is that we
obtain a ‘soft-segmentation mask’. As will be seen, using this as an intermediate
representation improves the classification performance compared to using the
hard segmentations.

3 Classification

The goal is to predict three different classifications for each DXA scan: (i) a
binary classification of scoliosis vs. non-scoliosis, outlined in [12], (ii) a binary
classification of positioning error which is dependant on the straightness of the



Predicting Scoliosis in DXA Scans Using Intermediate Representations 21

Fig. 4. Segmentation mask from mid-point and thickness: the segmentation masks
from intermediate soft segmentation of the body parts, which contain mid-point infor-
mation, alongside the corresponding thickness vector for each body part. We find the
intermediate segmentation, or soft mask, from the raw output of Conv11 can also be
used for classifying scoliosis and other tasks.

Fig. 5. Simple heuristics vs CNN: “Noisy” is the noisy annotation generated via simple
heuristics, and used to train the CNN. We see around 10% failure cases. Here we show
examples of those failure cases on the test set compared to the CNN segmentation for
the spine. Failures typically appears as under-segmentation of the spine around the
base or the middle of the spine highlighted in the “Noisy” examples.

whole body in the DXA scan, and (iii) the number of curves of a scoliotic spine
(only on cases with scoliosis). The number of curves is divided into three different
classes: no curve (normal spine); one curve, i.e. a “C” shaped spine; and more
than one curve, which includes the classical “S” shaped spine with two curves.
The networks for classification share the first six layers, five convolutional and
one fully connected layer, which branch out for each of the three classification
tasks (see Fig. 6).

Classification Loss: We follow the multi-task balanced loss approach discussed
in [7] which can be expressed as minimizing a combination of the softmax log-
losses of the three classifications:

Lt = −
N∑

n=1

⎛

⎝yc(xn) − log
Ct∑

j=1

eyj(xn)

⎞

⎠ (5)
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Fig. 6. Classification CNN: The network is inspired by the VGG-M network in [4]
with 5 convolutional layers and 3 fully connected layers but with slightly different
filter sizes and number of filters. We experimented with several different input for the
classification network: (1) raw DXA scan, (2) segmentation mask, (3) mid-point map,
and (4) a combination of the raw DXA and either the segmentation mask, mid-point
map or both.

where t corresponds to each classification and t ∈ {1 . . . 3}, x is the input scan,
Ct which corresponds to the number of classes in task t, yj is the jth component
of the FC8 output, and c is the true class of xn. The loss for each classification
is also balanced with the inverse of the frequency of the class to emphasize the
contribution of the minority class e.g. only 8% of the scans have scoliosis.

4 Dataset and Training Details

The dataset is from the Avon Longitudinal Study of Parents and Children
(ALSPAC) cohort that recruited pregnant women in the UK. The DXA scans
of the subjects were obtained from two different time points; when the subjects
were 9 and 15 years of age. This difference in acquisition period and the varia-
tion of height between different individuals results in a difference of scan heights.
Figure 7 shows a comparison of scans from various individuals at different time
points.

In all, there are 7645 unique subjects in the dataset, most of which have two
scans, which totals to 12028 scans. The distribution of labels of the different
classification tasks is given in Table 1. We use a 80:10:10 (train:test:validation)
random split, on a per patient basis (about 9.6k:1.2k:1.2k scans). Two different
random splits of the data are used throughout (from training to evaluation) in
order to obtain standard deviations on the classification performance.

Pre-processing: The scans are normalized such that both the head and feet
are roughly in the same region for all the scans regardless of age and original
height of the scans. Empty spaces on top of the head and below the feet are
also removed. The scans are cropped isotropically to prevent distortion and to
keep the aspect ratio the same as the original. The dimensions of the scans after
normalization is 416 × 128 pixels.
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Fig. 7. Height normalization: the top row shows examples of scans prior to height
normalization for both time points (9 and 15 years old), while the bottom row shows
the height normalized scans.

Training Details: Both the segmentation and classification networks are opti-
mized via stochastic gradient descent (SGD) from scratch. The hyperparameters
are; batch size 64 for segmentation and 256 for classification; momentum 0.9;
weight decay 0.0005; initial learning rate of 0.0001 for segmentation and 0.001
for classification, both of which are lowered by a factor of 10 as the loss plateaus.
The network were trained via the MatConvNet [13] toolbox using an NVIDIA
Titan X GPU. We employ several training augmentation strategies: (i) transla-
tion of ±24 pixels in the x-axis, (ii) translation of ±24 pixels in the y-axis, and
(iii) random flipping. At test time, the final prediction is calculated from the
average prediction of an image and its flip.
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Table 1. Distribution of labels: there
are three different classification tasks: (i)
scoliosis, (ii) positioning, and (iii) number
of curves (NOC). There are 12028 scans
but fewer labels, since not all scans have
labels for all three tasks.

Normal Abnormal

Positioning 10139

(94.3%)

1889

(15.7%)

Scoliosis 9435

(91.0%)

933

(9.0%)

0 1 >1

NOC 9435

(91.1%)

766

(7.4%)

159

(1.5%)

Table 2. The IoU of the models on
the test set: “L2” is the network trained
via L2 loss and “MT” is the network
trained on minimizing the mid-point and
thickness on a per scan line basis.

L2 MT

IoU Head 0.93 0.95

Spine 0.85 0.87

Pelvis 0.77 0.72

Pelvic cavity 0.64 0.90

Left leg 0.80 0.83

Right leg 0.81 0.84

5 Experiments and Results

5.1 Segmentation

Segmentation Losses Comparison: The segmentations are evaluated using
the intersection over union (IoU) between the predicted output and the noisy
label generated in Sect. 2.1. A CNN is trained for each loss, and their performance
compared in Table 2. The performance of the network trained on the mid-point
and thickness losses outperforms the network trained on the L2 loss on every
body part segmentation apart from the pelvis; 0.77 vs. 0.72. This might be due
to the fact that the pelvis is a much more complex segmentation task and harder
to segment on a per scan line basis. The pelvis ground truth annotations made
by the simple heuristics segmentation are also a lot noisier than the other body
parts.

5.2 Classification

Comparison of Input for Classification. We investigate different inputs for
the CNN for predicting the three classification tasks. The different inputs are
combinations of: (i) the raw DXA scan, (ii) the segmentation masks of the body
parts, and (iii) a soft segmentation of the body parts obtained from the output of
the Conv11 layer from the segmentation CNN (which also has mid-point infor-
mation of each body part per scan line). The network which only use the raw
DXA input is considered as baseline. CNNs with multiple inputs have concate-
nation layers after FC6 and share the last two layers for each task. The average
per-class accuracy is given in Table 3. It can be seen that the best choices are
networks that take in raw DXA together with either of the two intermediate
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representations, both hard and soft segmentation masks. Looking at each task
individually, the best network for scoliosis is the CNN (E) that takes in both
the raw DXA scan and the soft mask of the body parts, with an improvement of
+3.8% (86.7% → 90.5%) compared to the baseline CNN (A) that inputs just
the raw DXA. CNN (E) outperforms the baseline by +3.6% (69.0% → 72.6%)
for predicting the number of curves. Finally, the best result for positioning error
is CNN (D) which is +0.2% better than CNN (A) (81.5% → 81.7%). To sum-
marize, looking at Table 3, adding intermediate representation as input to the
classification CNN is always better, and that when comparing intermediate rep-
resentation, soft segmentation masks are better than hard (binary) segmentation
masks.

Table 3. Average per-class accuracy (mean ± std %): The top three rows are
the inputs used to train the network where “Raw DXA” is the raw DXA whole
body scan, “Mask” is the segmentation output, binary mask of the body parts, of
the segmentation CNN, and “Soft Mask” is the Conv11 output of the segmentation
CNN, which has both body parts localizations and mid-point information.

A B C D E

Raw DXA � � �
Mask � �
Soft Mask � �
Scoliosis 86.7 ± 2.0 82.5 ± 0.7 88.3 ± 0.1 87.3 ± 0.4 90.5± 1.5

Positioning 81.5 ± 1.8 77.6 ± 1.9 80.6 ± 1.3 81.7± 0.6 80.5 ± 0.3

#ofCurves 69.0 ± 2.1 68.2 ± 8.5 70.9 ± 2.3 69.7 ± 1.2 72.6± 1.2

Classification Hotspots. We investigate the weak localization of the task
learned by the CNN or evidence hotspots as in [6,7]. We follow the method
outlined in [16]. The best task to look at in our case is the scoliosis prediction.
Figure 8 shows different examples of scans in the test with scoliosis alongside
their hotspots. As expected, the hotspots manage to localize the spines in the
images, but also, interestingly, the hotspots manage to indicate which part of the
spine is affected by scoliosis; in Fig. 8, we can see hotspots examples of thoracic
scoliosis which localized around the thoracic region (upper spine) and examples
of lumbar scoliosis which localized around the lumbar region (lower spine).

Severity of Scoliosis. The output prediction of the network, specifically sco-
liosis, can be interpreted as a soft score of the task (softmax of the last layer).
Since the ease of predicting scoliosis directly relates to the how curved the spine
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Fig. 8. Evidence hotspots of scoliosis: top row shows examples of thoracic scoliosis
while bottom row shows examples of lumbar scoliosis. In each image, we show the
input image, the saliency map, and the saliency map overlaid on top of the image i.e.
hotspots.

is, the more confident the network is about the prediction, the more likely that
the scan has scoliosis. Figure 9 shows scans on the test set alongside their soft
scores. This soft score of scoliosis can be used to monitor disease progression of
patients with scoliosis, where getting higher scores across a period of time i.e. a
longitudinal study of the subject would mean the scoliosis is getting worse.
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Fig. 9. Severity of scoliosis: shown are examples on the test set and their soft scores
for scoliosis prediction; scans with scores approaching 1 are more scoliotic and scores
approaching 0 are normal. In this example, the 3 examples on the left are normal scans
and the 3 examples on the right have scoliosis.

6 Conclusion

We have shown that scoliosis can be predicted automatically via DXA scans,
and that predictions can improved by adding more supervision in the form of
intermediate representations, which in our case comes in the form of a soft
segmentation mask of the spine and other body parts. We have also demonstrated
that the evidence for the scoliosis classification can be weakly localized as hot
spots, and that the score defines a grading for scoliosis severity. One possible
future work is to predict the direction of the apex of the curves.
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