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Abstract. MRI is considered the gold standard in soft tissue diagnostic of the
lumbar spine. Number of protocols and modalities are used – from one hand 2D
sagittal, 2D angulated axial, 2D consecutive axial and 3D image types; from the
other hand different sequences and contrasts are used: T1w, T2w; fat suppres-
sion, water suppression etc. Images of different modalities are not always
aligned. Resolutions and field of view also vary. SNR is also different for
different MRI equipment. So the goal should be to create an algorithm that
covers great variety of imaging techniques.

1 Introduction

MRI is considered the gold standard in soft tissue diagnostic of the lumbar spine.
Number of protocols and modalities are used – from one hand 2D sagittal, 2D angu-
lated axial, 2D consecutive axial and 3D image types; from the other hand different
sequences and contrasts are used: T1w, T2w; fat suppression, water suppression etc.
Images of different modalities are not always aligned. Resolutions and field of view
also vary. SNR is also different for different MRI equipment. So the goal should be to
create an algorithm that covers great variety of imaging techniques.

We consider the segmentation as the first step in a 3-step process: 1. Segmentation
Fig. 1(a); 2. Measurements Fig. 1(b); 3. Diagnosis (in the case shown in the Fig. 1(b) -

Fig. 1. (a) Segmentation of axial T2w slide; (b) Measurement of dural sac in a different slide
(white line).
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severity of disk herniation and central canal stenosis grading). Our system detects most of
the visible tissues that are relevant for diagnosing a pathology. One of the tissues is
Intervertebral Discs.We applied ourmethodwith some extensions to detect intervertebral
discs in the IVDM3Seg Segmentation Challenge [7].

2 Methods

In order to cover different protocols a 2D single modality algorithm was developed that
in cases of 3D multi-modality data can be used in ensemble of multiple 2D single
modality data models. Our 2D algorithms are using CNN [1] and are greatly inspired of
ResNet [2]. Dropout regularization [3] and batch normalizations [4] are also used. FCN
[5] style network is used for the super-pixel classification as this enable arbitrary field
of view input. Super-pixels are 8 times smaller (in all dimensions) than the actual pixels
(as stride 8 is used due to 3 2 � 2 max pooling layers). As a result fine grained details
are lost, so we use Unet-like [6] architecture for up-scaling the low resolution map into
the resolution of the input image. Separate 2D single modality results are combined
into 3D results using ensemble with learnable weights combining the 3D information
from 3 separate probability maps. To overcome the problem with small data set size,
extensive augmentations were used: crop and resize, tilt, rotate, dynamic range chan-
ges, random noise in all possible combinations.

Datasets. Our dataset consists of 30 patient studies, 918 axial and sagittal slices in
total. The patients’ age ranges from 30 to 50 years old, with a mean age of 37.5 years
old, including both male and female patients suffering from lower back pain. This data
was provided by three medical centers, two of which use a GE Medical Systems to
acquire MRI. The third set of MRI was acquired by a SIEMENS machine. The
characteristics of the slices in the dataset vary:

• Voxel Thickness: 3.5 mm to 10 mm (mean 7.4 mm)
• Repetition Time: from 1040 ms to 6739 ms
• Echo Time: from 9.6 ms to 110.3 ms
• Axial Resolutions (Cols � Rows): 512 � 512, 276 � 192
• Sagittal Resolutions (Cols � Rows): 512 � 512, 384 � 768.

The slices are not uniformly spaced and are not parallel to each other. The axial
slices are parallel to each of the discs. This way there is no value for each of the voxels
in the volume of the study. 3D ensemble from this data set is not straight forward The
challenge dataset provided by IVDM3seg consisting of 16 patients with full 3D data
available, consisting of 4 modalities.

Feature Extraction. Fully convolutional ResNet-50 was used for feature map
extractor. The model is pretrained on COCO. The minimal stride of the feature map for
pretrained model we could find was 8. For Image (512 � 512 � 3) a feature map
(64 � 64 � 1024) is produced. It is believed that the bigger feature stride causes lower
resolution imperfections in the masks. For 256 * 256 * 37 the smallest feature map
resolution is 4. An attempt to overcome this limitation was UNet-like mask predictor
architecture.
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The model originally uses 3 input channels (RGB). To make use of the modalities of
the MRI, the 3 most useful modalities are used as input in the feature extractor model
(Fig. 2).

Segmentation. To produce more accurate masks, which capture finer detail and higher
frequency changes in the contour, a UNet-like architecture was used. To produce the
mask, series of up-convolutions are used, starting from the stride 8 feature maps of the
feature extractor and doubling the resolution on each layer. Each layer is combined
with the corresponding resolution feature map from an internal layer in the feature
extractor. This way higher level, lower resolution semantic features are used as context,
and lower level, higher resolution features are used for finer details (Fig. 3).

3D Ensemble. The prediction from 3 2D models (axial, sagittal, coronal) are com-
bined using a 3D convolution neural network. It has 2 layers of 3 � 3 � 3 convolu-
tions that are trained on the predictions of one part of the validation set and validated on
the other part. The challenge data set is divided into train and validation set. The 3
models are trained on the train set and the hyper parameters are tuned on the validation
set. When the models are trained one part of the validation set is predicted and the
predicted probability maps are used to train the 3D convolution model.

Fig. 2. The ResNet

Fig. 3. The UNet-like segmentation architecture
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The input for the 3D convolution is 6 channel 3D matrix. Each plane has 2 channels.
Probability of segmentation of disk and some relative position encoding parameter. The
position encoding parameter helps the model combine the information from all the 3
models in the best way.

The 3D ensemble combines the best predictions form each single plane 2D model.
Each model is better than the others at some specific regions of the disc and worse in
others. A 2D model mask is better at the middle section (according to the direction of
the normal of the plane) of the disc than in the endings (where the intersections are
smaller). By putting more weight on the proper model (plane) prediction at each region,
the 3D ensemble mask combines the best prediction from each of the models in each
region. So the combined mask is better than any single plane 2D mask.

The other big effect of the 3D model is that it filters some prediction noise. 2D
models sometimes predict false positives. There is a low probability that in a particular
voxel more than 1 models have predicted false positives so the noise gets filtered.
Single voxel or some small objects gets filtered too (Fig. 4).

Augmentation. In order to train a big model with a small dataset, extensive aug-
mentations were used. Elastic whole image deformation – Take N � N uniform grid of
points on the image, and chose a random direction vector for each point. Move each
pixel in that direction with amplitude, proportional to f(inverse distance to the point).
Tissue deformation – chose random points on the contour of the object and inside the
object. Apply the elastic deformation on that points.

Fig. 4. The sagittal view of the ground truth and predicted binarized mask from all planes and
combined with 3D ensemble.
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All the above augmentations, augment the image as well as the GT mask. Tissue
brightness – change the values of the pixels lying in the ground-truth mask in some
random direction. Noise – add white noise to each image, without changing the GT
masks (Fig. 5).

3 Results

Challenge Result. Results achieved by 4-fold cross validation using the data provided
by the organizers [7] are listed in Table 1.

As seen in Table 1, the 3D ensemble outputs 2 times less errors in the mask.
It is interesting that the middle discs have bigger dice than the first and the last. This

phenomenon is observed in the other participants in the challenge too. May be the
middle disc are “easier”. We had big problems with detecting the 7-th disc (Th11–
Th12) on some patients. Because only 7 discs were labeled in the GT, in some patients
unlabeled discs appeared above the 7-th disc, which caused our classifier to get

Fig. 5. The tissue deformation + brightness augmentation

Table 1. Comparison of single plane results vs 3D ensemble (cross validation).

2D planes used Mean DICE

Sagittal 0.81
Axial 0.81
Coronal 0.77
Ensemble 0.915
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confused if it has to detect discs closer to the top end of the image or not. The problem
was overcome by cropping the unlabeled discs out of the GT images during training.
Test time is 3:10 s on a single GPU machine that can be reduced to 1:20 in batch mode.
The model supports resolution of 512/512 that is 4 (2 � 2) times bigger than necessary
for this particular set so test time can be further reduced (Table 2).

During the cross validation we never observed detection of the sacrum. With this
assumption we developed a simple filtration algorithm which takes the bottom 7 discs.
But in test set evaluation the sacrum was detected in two of the patients which, led to
missing the top disc completely and punishing the metrics of the bottom disc (Table 3).

We calculated our expected test set dice metric without detecting the sacrum and
missing the top disc (Table 4).

Results in detecting disc herniation are as follows (Tables 5, 6 and 7).

Table 2. Dice by disc (cross validation)

Metric Disc_1 Disc_2 Disc_3 Disc_4 Disc_5 Disc_6 Disc_7 Mean

Dice 0.898695 0.925335 0.937724 0.929478 0.916675 0.907566 0.893001 0.915

Table 3. Dice by disc (challenge test set)

Metric Disc_1 Disc_2 Disc_3 Disc_4 Disc_5 Disc_6 Disc_7 Mean

Dice 0.91568 0.916019 0.923087 0.917543 0.905131 0.897439 0.903565 0.9112

Table 4. Dice by disc without the 2 lost discs

Metric Disc_1 Disc_2 Disc_3 Disc_4 Disc_5 Disc_6 Disc_7 Mean

Dice 0.91341 0.91602 0.92308 0.91754 0.90513 0.89744 0.90239 0.91072

Table 5. Herniated discs and slices performance

Accuracy Sensitivity Specificity Precision TP TN FP FN

Axial-Slice herniated 0.906 0.567 0.993 0.954 42 286 2 32
Disk herniated 0.890 0.750 0.975 0.947 18 39 1 6

Table 6. Localization of hernia top point

Mean Abs error

Hernia X error on true positives 3 pix
Hernia Y error on true positives 2 pix
Hernia height error on all slices 1.3 pix
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The performance of disc segmentation on our data is slightly worse than in the
challenge because of the acquisition format that we use. The data in the challenge is 3D
and has info for every voxel, while our data has slices spaced on bigger distance. The
axial slices and sagittal slices are different sequences which are not strictly orthogonal
to each other and to the coordinate system axes. 3D ensemble of the axial and sagittal
slices is not straight forward. An experiment was undertaken to find the relation
between the training set size and the validation set performance (Fig. 6).

4 Discussion

It seems like the ground truth masks of the 3D data are labeled only in the sagittal
plane. The human annotator labeled each sagittal slice of the 3D matrix, producing 3D
ground truth matrix concatenated from all the sagittal slices. This leads to strange
artifacts when looking the 3D matrix form other perspectives.

Table 7. Mask quality of different tissues (axial)

Tissue IoU of mask for correctly detected objects

Disc 0.86
Disc and hernia 0.86
Dural sac 0.89
Hernia 0.66
Articular process 0.68
Ligament 0.62
Spinous process 0.73
Vertebrae 0.90
Whole disc 0.88

Fig. 6. Predicted masks of different tissues and probability of herniated disc. Automatic disk
labeling.
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The same thing is possible during prediction. We have 3 2D models each working
on one of the three planes. Each model can make 1–2 pixel mistakes in the edge. So the
3D convolution, that combines the outputs of the three models, uses the prediction of
each of the model in the region where it is most accurate. This way using the strengths
of each of the model (Figs. 7 and 8).

The same thing is possible during prediction. We have 3 2D models each working
on one of the three planes. Each model can make 1–2 pixel mistakes in the edge. So the
3D convolution, that combines the outputs of the three models, uses the prediction of
each of the model in the region where it is most accurate. This way using the strengths
of each of the models.

Fig. 7. Good looking ground truth disc segmentations in sagittal view.

Fig. 8. Artifacts in ground truth masks viewed from plane which was not used during labeling.

Automatic Segmentation of Lumbar Spine MRI Using Ensemble of 2D Algorithms 161



Problems with Detection. Although the mask quality of correctly detected objects is
relatively good, there is a problem with detecting small objects. The most likely reason
is the big feature map stride (8 � 8). When the stride is big, one feature map pixel
corresponds to bigger area of original pixels. Instead of training one convolutional filter
many times, one filter gets trained less times, but with more diverse set of positions of
the smaller object in it. So there are a lot of places where the object did not appear in
the filter’s field of view. This leads to underfitting of the bigger convolutional filter and
to underfitting of the detector.

5 Conclusion

Test accuracy was similar to the previously reported results using 3D convolutions on
the test data of the previous challenge [8] although the algorithm was designed for 2D
single-modality data. Training set accuracy is near 100% which can be expected as the
complexity of the model is very big and definitely high variance is the current draw-
back. Never the less we decided to not reduce the complexity as we believe bigger
training set is necessary for reaching human level accuracy. So further test set accuracy
improvements can be expected by increasing the training set. Our intention for the
future development is to cover great variety of tissues and pathologies by acquiring an
annotated training set of 500 patients. Part of them will be released to the scientific
community.
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