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Abstract. The intervertebral discs (IVDs) segmentation and localization on
medical images are important for the clinical diagnosis and research of spine
diseases. In this work, we proposed a robust automatic method based on 2.5D
multi-scale fully convolutional network (FCN) and geometric constraint post-
processing for IVD segmentation and localization on 3D multi-modality Mag-
netic Resonance (MR) scans. Firstly, we designed a 2.5D multi-scale FCN. And
the ensemble outputs of such three networks are used as the IVD prediction
maps. The final segmentation and localization of IVDs are generated from these
prediction maps with a geometric constraint post-processing method. This work
ranked the first in the on-site test of MICCAI 2018 Challenge on Automatic
Intervertebral Disc Localization and Segmentation from 3D Multi-modality MR
Images (IVDM3Seg).
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1 Introduction

The intervertebral disc (IVD) is a cartilaginous joint that lies between adjacent verte-
bras. It plays a crucial role in the shock absorption of vertebral movement [1, 2]. In
modern society, back pain is becoming a common healthy problem, which causes the
pain, stiffness and loss of independency of patients. According to the international
studies, the point prevalence of back pain is between 12% and 35%, while the lifetime
prevalence is up to 49% to 80% [3]. For this disease, degeneration of the intervertebral
disc is considered as a major cause [4].

Magnetic Resonance Imaging (MRI) is a commonly used imaging technique in the
diagnosis of IVD degeneration and many other diseases, which provides non-invasive
assessment to human body. Compared to other medical imaging methods, such as
Computed Tomography (CT) imaging, MRI could provide excellent contrast in soft
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tissue without ionizing radiation. Besides, the MR scans could be obtained with dif-
ferent modalities, and provide more information about tissue structure. In this work,
four MRI modalities (i.e. in-phase, opposed-phase, water, fat) were used for the seg-
mentation and localization of IVDs. Figure 1 shows an example of these four
modalities. It should be noticed that only the 7 IVDs between the twelfth thoracic
vertebra and sacrum are delineated manually as the targets.

The research on IVD degeneration usually needs the segmentation of IVDs. Tra-
ditionally, the IVD labels are delineated manually. However, this job is always time-
consuming and may be biased for inter- and intra-observer variabilities [5, 6]. For this
matter, automatic IVD segmentation and localization methods have great significance
to the study of IVD degeneration.

There are three main challenges for automatic IVD segmentation and localization
on multi-modality images. Firstly, distinguishing different IVDs is difficult due to the
intra-subject similarity of IVDs. Secondly, the intensity of IVD boundary resembles
that of the neighborhood tissues, which makes the IVD contour fuzzy. Thirdly, how to
harness the multi-modality information effectively in medical image processing
remains to be explored.

Fig. 1. An example of 3D multi-modality images provided by MICCAI 2018 Challenge on
IVDM3Seg. (a) to (d) are in-phase, opposed-phase, water, and fat modality in order while (e) is
the manually delineated labels for 7 IVDs between the twelfth thoracic vertebra and sacrum.
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1.1 Previous Work

There are many segmentation and localization methods proposed in previous research,
which are based on traditional hand-crafted features [7–13]. Besides, some popular
graph-based methods, such as graph cut [10] and statistical shape model [7], were also
applied to IVD segmentation. For localization, some graphical models were proposed
to take IVD geometric relationship into account [13]. With the reference to the local
parts shape and neighborhood anatomical structures, the accuracy of IVD localization
improved in some degree.

In recent years, machine learning has drawn extensive attention in many fields.
Some classical machine learning algorithms, such as marginal space learning
(MSL) [14], Adaboost [15], and sparse kernel machine [16], were also adopted to IVD
segmentation and localization. And these methods have shown excellent performance.

More recently, deep learning techniques achieved great success in computer vision.
Many researchers began to attempt deep learning algorithms in medical image pro-
cessing. And these methods have proven effective. In the past few years, all the state-
of-art methods on MICCAI IVD segmentation and localization challenge were deep
learning-based [17, 18].

Multi-modality images are not only available for IVD segmentation and localiza-
tion. How to utilize multi-modality information is a common issue in medical image
processing, such as MRI-based brain tissue [19] and brain tumor segmentation [20].
Generally, the harness of multi-modality data could improve the performance more or
less.

1.2 Our Contribution

We propose a 2.5D multi-scale deep learning network for segmentation and localiza-
tion of IVDs on multi-modality MR scans. Our method achieved the state-of-art per-
formance in the MICCAI 2018 Challenge on IVDM3Seg.

Our main contributions are summarized below:

1. We proposed a multi-scale 2.5D fully convolutional network (FCN) for IVD seg-
mentation and localization on multi-modality MR scans. The back bone of the
proposed network is a U-Net [21] like architecture. The input of the 2.5D network is
a few adjacent slices from multi-modality MR scans, while the output of this
network is a 2D slice corresponding to a certain layer of the input. For the purpose
of make full advantage of multi-modality information, Squeeze-and-Excitation
(SE) modules [22] are added in the skip connections.

2. We proposed a model fusion strategy to improve accuracy and robustness of IVD
prediction. In this work, we trained three different 2.5D networks. The predictions
of these models are corresponding to the middle, the rightmost, and the leftmost
slices of the input sequence. For the slices located at the middle of 3D images along
Z-axis, the average outputs of these models are taken as the final predictions. For
the slices near the both edges, IVD predictions are generated by the model, which is
corresponding to either the rightmost or the leftmost slice of the input sequence.

3. We proposed a geometric constraint post-processing method to generate accurate
IVD localization results. This method takes the intra-subject geometric relationship
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of IVDs into account. In our experiments, the false positive regions on the pre-
diction maps are well eliminated by this method.

2 Methodology

The detail of IVD segmentation and localization method is elaborated in this section.
We start by illustrating the architecture of proposed 2.5D multi-scale FCN for IVD
segmentation. Furthermore, we explain the way to harness multi-modality images with
this network. To improve the robustness and accuracy of prediction, an ensemble
strategy is employed in this work. In order to correct the false positive regions in
prediction maps, we proposed a post-processing pipeline, which takes geometric
constraint of 7 specified IVDs into account. The final results of segmentation and
localization are generated by this post-processing method.

2.1 2.5D Multi-scale FCN for IVD Segmentation

The detail structure of proposed network is shown in Fig. 2. The back bone of this
network is a U-Net like architecture, which has achieved great success in medical
image processing since it was proposed in 2015. To utilize multi-modality images, the
architecture of U-Net is slightly adapted from the origin version. The input of this
network is expanded up to 44 (11 slices * 4 modalities) channels to harness the multi-
modality data, while the output is corresponding to a certain position of the input
sequence. Besides, residual connections are added between feature maps with the same

Fig. 2. The details of our proposed 2.5D multi-scale FCN for IVD segmentation. The input slice
sequence includes 44 slices, which consists of 11 consecutive slices from four modalities with the
same corresponding position. The prediction map is corresponding to the middle, the leftmost, or
the right most slice of the input sequence.
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scale. And SE modules are also inserted in skip connections between the contracting
path and the expansive path. The reduction ratio used in SE modules is set to be 16.

2.2 2.5D Multi-scale FCN Ensemble Strategy

All the multi-modality images used in this work are in the same size of
256 * 256 * 36. For each study, 11 consecutive slices from four modalities with the
same corresponding position are extracted and concatenated as the input sequences.
And there are 26 such consecutive sequences for each image. These input sequences
are utilized to train three 2.5D multi-scale FCNs. The prediction of these models is
corresponding to different layers respectively, which are the middle, the leftmost and
the rightmost slices in the input sequence. We use mmiddle, mleft and mright to denote
these three models in the following content. The ensemble outputs of these models are
produced as prediction results, which are more accurate and robust. For the simplicity
of description, a mono-modality 3D image V is picked as an example. Slices in V from
left to right are denoted as Si i 2 1; 2; . . .; 26f gð Þ. For S6 to S31, the average outputs of
mmiddle, mleft and mright are taken as the prediction of IVD segmentation. For S1 to S5
and S32 to S36, the prediction of IVD segmentation is generated by mleft and mright

respectively.

2.3 Geometric Constraint Post-processing

Although model ensemble can improve the accuracy and robustness of segmentation
results to a certain extent, there are still some obvious false positive regions in the
prediction maps. These false positive areas could be categorized as two types, the
isolated noise points, and the IVD segmentation above the twelfth thoracic vertebra.
Figure 3 visualizes some ensemble prediction maps on opposed-phase. The isolated
noise can be well eliminated by excluding the small connected regions in prediction
maps. For IVDs above the twelfth thoracic vertebra, we proposed a post-processing
method with geometric constraint for removal. Firstly, we picked the ground truths
from training set, and aligned them to the segmentation result with reference to the
centroid of the last IVD. These ground truths are then registered to the segmentation
result with affine transformation. The best fitted one is then selected as the mask.
Remove all the connected regions that have no intersection with this mask. The
remaining content is right the final prediction of 7 expected IVDs. For the robustness of
post-processing, the registered ground truth was dilated before being applied as the
mask (Fig. 4).
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3 Experiments and Results

3.1 Data

The performance of our method was evaluated on multi-modality MR scans provided
by MICCAI 2018 Challenge on IVDM3Seg. These data were collected from 8 subjects

Fig. 3. Examples of prediction map on opposed-phase without post-processing. (a) to (f) are 6
slices extracted from a study. Green contours indicate the boundary of the ground truths. And the
ensemble prediction of IVDs is delineated by red lines. (Color figure online)

Fig. 4. Illustration of the geometric constraint post-processing. (a) is the ensemble prediction of
proposed networks. The red mask in (b) is the chosen registered ground truth with binary
dilation. And (c) is the final IVD segmentation result of our method. (Color figure online)
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at two time points of prolonged bed rest study. For each study, four MR scans acquired
with different modalities (i.e. in-phase, opposed-phase, water, fat) were enrolled. And
the IVDs between the twelfth thoracic vertebra and sacrum are delineated manually as
the ground truth. Figure 1 shows an example of these multi-modality images and the
corresponding ground truth.

3.2 Pre-processing and Data Augmentation

The multi-modality images were pre-processed with some commonly used methods.
Firstly, N4 correction algorithm was applied to correct the bias field of MR scans. In
the next stage, intensity distribution of the corrected images was normalized as zero
mean and unit variance. For the inadequacy of training data, some data augmentation
methods (i.e. random scale, rotate, translation, and deformable transformation) are
applied during the training stage.

3.3 Evaluation Metrics

The segmentation and localization results are evaluated with the following three
quantitative metrics:

1. Dice overlap coefficient. The Dice metric is one of the most popular assessments for
semantic segmentation, which measures the percentage of true positive voxels in
prediction. The definition of Dice can be expressed by the following formula:

Dice ¼ 2 A\Bj j
Aj j \ Bj j � 100% ð1Þ

Where A is the set of foreground voxels in the ground truth and B denotes the
corresponding set in the prediction of foreground.

2. Average absolute distance (ASD). For IVD segmentation task, ASD is the average
absolute distance between disc surface of ground truth and segmentation result.
Smaller ASD means a better segmentation result.

3. Localization distance. This metric is used for measuring the localization results. It is
calculated by the equation below:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dxð Þ2 þ Dyð Þ2 þ Dzð Þ2
q

ð2Þ

Where Dx, Dy and Dz are the absolute distance between the identified IVD centroids
and the corresponding ground truth along X-, Y- and Z-axis. It is obvious that a
smaller localization distance means a more accurate localization.
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3.4 Results of MICCAI 2018 On-site Challenge

Tables 1, 2, and 3 list the on-site test results of MICCAI 2018 Challenge on
IVDM3Seg with proposed method. Our method achieved the state-of-art performance
with the respect of all the three quantitative metrics (i.e. Dice, ASD, and Localization
distance) among nine participating teams.

Table 1. Dice of on-site test results

Dice Disc_01 Disc_02 Disc_03 Disc_04 Disc_05 Disc_06 Disc_07

Test_01 0.887 0.904 0.927 0.911 0.896 0.890 0.869
Test_02 0.909 0.934 0.941 0.944 0.930 0.925 0.924
Test_03 0.896 0.898 0.901 0.866 0.896 0.817 0.887
Test_04 0.920 0.939 0.938 0.915 0.912 0.885 0.924
Test_05 0.900 0.911 0.917 0.918 0.868 0.898 0.926
Test_06 0.865 0.914 0.930 0.909 0.897 0.898 0.892
Test_07 0.905 0.931 0.931 0.915 0.904 0.890 0.865
Test_08 0.905 0.928 0.924 0.925 0.910 0.907 0.889

Table 2. ASD of on-site test results

ASD (mm) Disc_01 Disc_02 Disc_03 Disc_04 Disc_05 Disc_06 Disc_07

Test_01 0.73 0.67 0.49 0.58 0.63 0.61 0.67
Test_02 0.54 0.48 0.43 0.37 0.43 0.41 0.41
Test_03 0.71 0.80 0.73 0.87 0.58 0.89 0.53
Test_04 0.54 0.47 0.41 0.49 0.47 0.51 0.29
Test_05 0.57 0.70 0.69 0.61 0.98 0.67 0.37
Test_06 0.85 0.66 0.56 0.76 0.78 0.69 0.54
Test_07 0.63 0.52 0.52 0.63 0.62 0.64 0.64
Test_08 0.72 0.63 0.61 0.57 0.62 0.57 0.58

Table 3. Localization distance of on-site test results

Localization (mm) Disc_01 Disc_02 Disc_03 Disc_04 Disc_05 Disc_06 Disc_07

Test_01 0.41 1.42 0.52 0.78 1.37 1.02 1.09
Test_02 0.30 0.73 0.27 0.50 0.72 0.40 0.17
Test_03 0.64 0.31 1.34 2.12 0.97 1.30 0.43
Test_04 0.81 0.52 0.62 1.30 0.49 1.22 0.08
Test_05 0.79 0.30 0.13 1.02 0.92 0.97 0.41
Test_06 1.23 0.47 0.45 0.09 0.65 1.09 0.76
Test_07 0.56 1.09 0.94 1.22 1.19 0.58 1.08
Test_08 0.36 1.31 0.72 0.91 1.04 0.34 0.56
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4 Discussion

Some common spine diseases, such as low back pain (LBP), have proven to be
associated with IVD degeneration [23]. IVD segmentation and localization have
important significance in clinical diagnosis and research. In this work, we proposed an
automatic IVD segmentation and localization method on multi-modality MRI with
2.5D multi-scale FCN and geometric constraint post-processing.

In the MICCAI 2018 Challenge on IVDM3Seg, the deep neural network is the most
popular algorithm. For 3D multi-modality MR images, processing with a 3D network is
a straightforward approach. Compared to 2D networks, 3D architectures could generate
more discriminative spatial features. And these architectures were employed by some
teams in this challenge. Due to the plenty of parameters in deep neural networks, a
huge amount of data is demanded in training stage. However, there were only 16
studies provided by MICCAI 2018 Challenge on IVDM3Seg, which were collected
from 8 subjects at two time points. Considering the inadequacy of 3D multi-modality
images, we proposed a 2.5D multi-scale FCN architecture as a tradeoff between the
capacity of network and the amount of training data. The on-site test results of MICCAI
2018 Challenge on IVDM3Seg shows that the performance of 2D networks was better
than that of 3D networks in general with limited training data. And our 2.5D FCN
surpassed both 2D and 3D architectures.

The intra-subject morphology and topology relationship between IVDs are similar
inter-subjects. And it is potential to be utilized for IVD localization. However, this rela-
tionship is hard to be captured byFCN.To take this information into account,we proposed
a geometric constraint post-processing method based on registration. And it shows great
performance in on-site test of MICCAI 2018 Challenge on IVDM3Seg. It should be
noticed that our registration-based post-processing relies on the inter-subject consistency
of IVD intra-subject geometric relationship. If this consistency was destroyed by some
severe spine diseases, this method may produce wrong cases. The IVD localization
method with better robustness remains to be explored in the future work.
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