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Abstract. Intervertebral discs are joints that lie between vertebrae
in the spinal column, which absorb shock between vertebrae during
activities. There is a strong correlation between lower back pain and
degeneration of intervertebral discs, which may have a great impact on
peoples normal life. The precise segmentation of the intervertebral disc
is of great significance for the diagnosis of disc degeneration. Currently
clinical practice usually manually annotates the volumetric data, which
is time-consuming, tedious, needs a lot of expertise and lacks of repro-
ducibility. In this challenge, we developed a fully automated framework
that can accurately segment and locate seven intervertebral discs. First,
we delicately designed a powerful segmentation network which is a 2D
fully convolutional neural network with densely connected atrous spatial
pyramid pooling to capture and fuse multi-scale context information.
Then we used a localization network and a robust post-process scheme
to distinguish different IVD instance. Further more, we proposed a novel
training strategy that can make the segmentation network focus on the
spine region. The effectiveness of our algorithm is proven in the chal-
lenge, we achieved the mean segmentation Dice coefficient of 90.58%
and a mean localization error of 0.78 mm.

Keywords: IVD localization · IVD segmentation · Deep learning

1 Introduction

The intervertebral disc is a fibrocartilage disc that connects adjacent vertebrae
so that the spine can move within a certain angle. The IVDs have the nature of
toughness and elasticity, and can be deformed under pressure, so that the force
applied on the IVDs can be evenly distributed into all directions, and ensure the
entire surface of vertebral is subjected to the same pressure. IVDs are also the
main structure for absorbing shock. When the human body jumps, falls from
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a high place, and performs other vertical movements, or when the shoulders,
back, and waist suddenly load heavy objects, the IVDs can buffer the force by
conduction and self-deformation, hence plays the role of protecting the spinal
cord and vital organs in the body.

However, with age, excessive activity or overload, it may lead to degeneration
of the intervertebral disc, causing lower back pain, numbness of lower limb, nerve
injury or even loss of movement, which will seriously affect work ability and life
quality. Clinically, medical image analysis is usually the best non-invasive diag-
nostic method. In order to obtain quantitative parameters, doctors usually man-
ually annotate the IVDs. However, for 3D images, this method is usually tedious,
time-consuming, needs a lot of expertise and lack of reproducibility. Therefore,
a fully automatic localization and segmentation algorithm of the intervertebral
disc can offer visualized 3D reconstructed image and also provide quantitative
parameters, which can greatly improve the speed as well as the quality of the
diagnosis.

As magnetic resonance imaging has the properties of excellent sensitivity to
soft tissue and no radiation, it is widely considered to be the best modality for
disc disease diagnosis. Further more, the Dixon method can generate fat only
and water only images by combining the in-phase and opposed-phase signal.
Making full use of the image information from different modalities can improve
the accuracy of the segmentation algorithm. The four modality Dixon sequences
are showed in Fig. 1.

Fig. 1. Examples of multi-modality Dixon sequence, including in-phase, opposed-
phase, fat and water from left to right. Each modality has different contrasts for specific
components, making full use of multi-modality information can result in better con-
tour segmentation. It should be noted that there are more than seven IVDs in the MR
images, but only the lumber IVDs are our objective.

The task of this challenge has two parts, the localization and segmentation of
intervertebral disc. The objective of segmentation is to obtain the binary mask
of each IVD, i.e. each voxel in the image is classified into the disc category or
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non-disc category. The objective of localization is to obtain the coordinates of
the centroid of each disc, which is calculated by the morphological center of each
IVD mask. The segmentation algorithm affects both segmentation accuracy and
localization accuracy, therefore a good segmentation algorithm is a prerequisite.

1.1 Related Work

In early studies, researchers typically used hand-crafted features [4,14] based
on image intensity or texture features for IVD localization and segmentation.
Graph-based methods are commonly used in the segmentation of vertebrae and
discs. For example normalized cut [2] and graph cut algorithm [1] were used for
IVDs segmentation in spine MR images. And graphical models [5,12] were used
for IVD localization.

As learning-based approaches gain more and more attention in the medical
image analysis field, several marginal spacing learning [9] and regression-based
methods [3] are proposed for localize IVDs and segment IVDs. However, those
methods were limited by the representation capability of the hand-crafted fea-
tures.

Recently, deep learning methods have revolutionized medical image analysis
and computer vision field with its remarkable feature representation capability.
For example, Ronneberger et al. [13] proposed U-net for cell segmentation from
2D images and Dou et al. [6] proposed 3D convolutional neural network for 3D
liver cancer segmentation. Deep learning methods also improve the performance
of IVD localization and segmentation to a brand new level. For example, Li
et al. [10] proposed a 3D multi-scale FCN with random modality dropout scheme
to better utilize multi-modality information and achieved decent accuracy for
IVD localization and segmentation.

1.2 Contribution

We propose a strong and robust deep learning framework for IVDs localiza-
tion and segmentation from multi-modality MR images. The evaluation results
from MICCAI 2018 Automatic Intervertebral Disc Localization and Segmenta-
tion from 3D Multi-modality MR Images demonstrated the effectiveness of our
proposed framework. Our main contributions can be summarized as follows:

• We delicately design a 2D fully convolutional network, which only performs
downsampling for 2 times, and use densely connected atrous spatial pyramid
pooling to capture multi-scale features as well as ensure large enough receptive
field. The network consists of three separate pathways for different spatial res-
olution features, which makes the training of encoder more effective. Further
more, a Squeeze-and-Excitation module are used for channel-wise attention.
This network is a strong backbone that can be generalized to other medical
image segmentation tasks.
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• We designed a 3D V-Net based localization network with a robust post-
process scheme to classify the seven lumber disc into seven category and
distinguish them from other thoracic discs, which makes the whole frame-
work to be fully automated.

• We proposed a novel and intuitive training strategy that can make the seg-
mentation network focus on the spine region while ignore the interference
from large and complex backgrounds.

• Our method was evaluated on MICCAI 2018 IVDM3Seg dataset which con-
sists of 16 sets of 3D multi-modality MR images from 8 subjects, and demon-
strated superior performance.

Fig. 2. The pipeline of proposed framework for IVD localization and segmentation.
The segmentation first perform binary segmentation to classify each voxel into disc and
non-disc region. The localization network and post-process treat each disc instance as
a categories and assign label from 1–7 from bottom to top.

2 Methodology

The pipeline of our framework for IVD localization and segmentation are illus-
trated in Fig. 2. Our localization and segmentation framework mainly consists
of two parts: the segmentation network, the localization network and the post-
process scheme. The objective of segmentation is to output the binary masks of
each IVD, however, because of the similarity between thoracic discs and lumber
discs, the segmentation network will predict more than 7 IVD masks, though
only 7 lumber discs have annotation. To obtain the final result and achieve the
purpose of fully automation, we designed a V-Net based localization network
which treats each IVD as an instance, i.e. performs 7 class segmentation, and
then used a post-processing method to increase the robustness of the localization
network.

2.1 Segmentation Network

In recent years, convolutional neural networks have revolutionized the field of
computer vision and medical image analysis. 2D CNNs based methods have made
great progress on medical images compared to traditional methods. Recently, 3D
CNNs [6,11] are explored as they can capture volumetric contextual information
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Fig. 3. The proposed 2D fully convolutional segmentation network, it takes the 4-
channel concatenated multi-modality image as input, and outputs the binary mask of
IVDs.

and have better representation capability. However, 3D CNNs essentially have
a disadvantage compared to 2D CNNs, they have a greater demand for data, as
3D CNNs treat a volumetric image as a single sample while 2D CNNs treat each
slice as a single sample. There are only 16 samples in the training set, therefore,
we think the 2D network is more suitable for this task.

U-net [13] is one of the most successful 2D convolutional neural networks in
medical image analysis, many previous deep learning methods are modified based
on it. U-net has a symmetric Encoder-Decoder structure, the encoder encodes
multi-scale information into feature maps by four downsamplings. The decoder
then reconstruct spatial resolution from high-level feature maps by upsampling
or deconvolution, while high-resolution features are also concatenated by short
connection from encoder to assist reconstruction. However, this structure has
three inherent defect for semantic segmentation. First, too many times of down-
sampling leads to the loss of detail information, although the high-resolution
feature maps are used in the reconstruction process, but this low-level feature
concatenate and feature fusion can only slightly alleviate the problem. Second,
UNet captures multi-scale features by downsapling, which results in capturing
only fixed and limited scales of features, making it difficult to represent complex
and variable anatomical structures. Third, during the gradient back propagation
in the training phase, the encoder will receive two gradient signals from different
resolutions, one is the low resolution gradient signal from below, and the other
is the same resolution gradient signal from the shortcut connection. It cannot
be guaranteed that the two path have the same magnitude of gradient signal
because the number of convolution layers on different paths is quite different.
The mixing of these two signals in the training process will affect the effectiveness
of the encoder training.

To solve the problems mentioned above, we elaborately design our segmen-
tation network, see in Fig. 3. We use a strong backbone network, which is based
on DenseNet [8] and uses Squeeze-and-Excitation module [7] as channel-wise
attention. For the first problem, reduce the number of downsampling is a intu-
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Fig. 4. The pipeline of localization network and the post-process scheme. (Color figure
online)

itive solution. In the trade-off between the GPU memory usage and segmentation
accuracy, our network only perform two downsamplings, it can effectively reduce
the information loss, and improve the segmentation accuracy of the detailed edge
region of discs. However, such structure has a disadvantage that the network
can only fuse less scales of features, moreover, the receptive field of convolution
kernel become smaller, which makes it difficult to capture more global and high-
level features. Therefore, we further use densely connected dilated convolution to
solve this problem, or use another name, densely connected atrous spatial pyra-
mid pooling (ASPP). Compared with the serial connected or parallel connected
[15] counterpart, densely connected ASPP combines arbitrary scales of features,
which can be adjusted by dilation rate, and better feature reuse. In our model,
we use the dilation rate of 3, 6, 12, 18 and 24. For the third problem, inspired
by some works on multi-task learning, we design three separate paths to handle
different resolution signal, i.e. treat each resolution signal path as a single task.
This approach can train each path more effectively without interfering with each
other.

2.2 Localization Network and Post-process

Although the segmentation network is trained only with 7 lumbar discs anno-
tation, the network predicts more than 7 IVDs because of the similar anatomy
pattern of thoracic disc and the lumbar disc. We design a localization network
and a post-process scheme to handle the output of the segmentation network,
and fully automatically get the target mask of 7 lumbar discs. The structure is
shown in Fig. 4. The localization network has a V-Net structure, which is a 3D
fully convolutional neural network with residual connection. The ground truth
annotation of the localization network is obtained by marking the mask of the
7 IVDs in the original annotation from 1 to 7 from bottom to top, that is, the
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localization network output 8 channels score map, including seven IVDs and one
background.

Then the prediction from localization network and prediction from segmen-
tation network are intersected together. Due to the similar appearance of the
IVDs, the predicted mask from localization network in the often have misclassi-
fied areas in the upper part of images, but the segmentation of the bottom disc
is always right. We then use a reference image from training set as moving image
to be registered to the predicted mask, and fit the centerline of spine from the
centroid of each disc in the registered mask, i.e. the red line shown in Fig. 4. At
last, we calculate the connected area of the predicted mask. Only the connected
area that intersects with the fitted centerline of the spine is retained. The other
connected regions are set as background. Then, the reserved connected region is
assigned with label from 1 to 7 from bottom to top.

This localization and post-processing strategy can greatly improve the
robustness of the framework, even if there are some misclassified outliers in
the segmentation network, it will not affect the identify of IVDs.

2.3 Training Strategy

To further improve the performance of the segmentation network, we made a
natural assumption.

Assumption. Only the spine part of the entire input image is useful for IVD
segmentation, while region outside the spine only acts as a useless background,
which will reduce the accuracy of the segmentation performance.

We first train a UNet to predict the spine area, where the label was generated
by calculating the convex hull of the annotation of discs after several dilation
operations. When training the segmentation network, the predicted mask from
the UNet was used, and we ignore the loss outside the spine region. In the
inference phase, the spine region is also predicted, and all the region outside the
spine is set as background in the output of segmentation network.

2.4 Loss Function

When training segmentation network, focal loss was used for better focus on
hard samples, i.e. the boundary region of IVDs, and the formula is as follow:

L(p) = −α(1 − p)γ log(p), (1)

Since the use of focal loss may cause instability problems when training, we first
train several epochs using cross entropy loss, then use focal loss.

3 Experiments

3.1 Dataset and Data Augmentation

We evaluated our proposed method on the dataset from MICCAI 2018
IVDM3Seg Challenge using both cross validation on the training data and inde-
pendent test data on the on-site challenge, where training data consists of 16
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sets of 3D multi-modality MR images from 8 subjects, and test data consists of 8
sets of 3D multi-modality MR images from 4 subjects. Each subject was scanned
with a 1.5-Tesla MRI scanner of Siemens using Dixon protocol. The voxel spac-
ing of each image is 2 mm × 1.25 mm × 1.25 mm. For the data augmentation,
we use 3D deformation, random scale, random noise, and random crop.

3.2 Evaluation Metrics

Dice overlap coefficient measures the percentage of correctly segmented vox-
els. Dice is computed by

Dice(A,B) =
2 | A ∩ B |
| A | + | B | × 100%, (2)

where A is the sets of foreground voxels in the ground-truth data and B is the
corresponding sets of foreground voxels in the segmentation result, respectively.

Average absolute distance (ASD) is a metric measures the average abso-
lute distance from the ground truth disc surface and the segmented surface.
Smaller average absolute distance means better segmentation accuracy.

Localization distance R is computed by

R =
√

(Δx)2 + (Δy)2 + (Δz)2, (3)

where Δx, Δy, Δz is the absolute difference between the identified IVD center
and the ground truth IVD center calculated from the ground truth segmentation
in X, Y and Z axis. Smaller localization distance means better segmentation
accuracy.

3.3 Results of MICCAI 2018 and Training Set Cross Validation

The evaluation result of the on-site challenge of MICCAI 2018 IVDM3Seg are
listed in Tables 1, 2 and 3. Our method demonstrated good performance and
strong robustness. Since the test data are not available to us, the segmentation
result are visualized using training set cross validation, see in Fig. 5.

Table 1. Dice overlap coefficient of independent test set in on-site challenge.

Dice Disc 01 Disc 02 Disc 03 Disc 04 Disc 05 Disc 06 Disc 07

Test 01 0.888 0.904 0.927 0.911 0.896 0.890 0.868

Test 02 0.908 0.934 0.940 0.944 0.930 0.923 0.925

Test 03 0.894 0.896 0.900 0.866 0.896 0.818 0.884

Test 04 0.918 0.938 0.938 0.913 0.909 0.885 0.925

Test 05 0.897 0.911 0.917 0.918 0.869 0.896 0.926

Test 06 0.865 0.914 0.929 0.910 0.898 0.898 0.892

Test 07 0.904 0.931 0.931 0.914 0.904 0.887 0.863

Test 08 0.904 0.928 0.922 0.923 0.910 0.907 0.889
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Table 2. Average absolute distance of independent test set in on-site challenge.

ASD(mm) Disc 01 Disc 02 Disc 03 Disc 04 Disc 05 Disc 06 Disc 07

Test 01 0.73 0.67 0.49 0.58 0.63 0.61 0.68

Test 02 0.54 0.47 0.44 0.37 0.44 0.41 0.41

Test 03 0.72 0.82 0.74 0.87 0.57 0.90 0.54

Test 04 0.55 0.48 0.42 0.50 0.48 0.51 0.29

Test 05 0.58 0.70 0.69 0.61 0.97 0.68 0.37

Test 06 0.85 0.66 0.57 0.75 0.78 0.69 0.55

Test 07 0.64 0.53 0.52 0.64 0.62 0.65 0.65

Test 08 0.72 0.63 0.63 0.68 0.62 0.57 0.58

Table 3. Average absolute distance of independent test set in on-site challenge.

Localization(mm) Disc 01 Disc 02 Disc 03 Disc 04 Disc 05 Disc 06 Disc 07

Test 01 0.44 1.42 0.53 0.78 1.37 0.98 1.08

Test 02 0.38 0.73 0.27 0.47 0.73 0.41 0.18

Test 03 0.64 0.33 1.36 2.11 0.95 1.27 0.46

Test 04 0.83 0.53 0.63 1.35 0.50 1.20 0.08

Test 05 0.80 0.34 0.13 1.04 0.93 1.04 0.49

Test 06 1.23 0.47 0.43 0.12 0.64 1.09 0.66

Test 07 0.60 1.12 0.98 1.21 1.17 0.63 1.07

Test 08 0.28 1.30 0.77 0.92 1.03 0.35 0.60

Fig. 5. Visualization of one subject in training set cross validation, the green line is the
prediction of our approach, read line is ground truth and yellow line is the intersection.
These images are from subject 3, the images in the first row is obtained in the first
phase, while the second row is obtained in the second phase. (Color figure online)
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4 Conclusion

In this paper, we present our novel and robust IVD segmentation and localiza-
tion framework from multi-modality MR images, which achieve state-of-the-art
performance. The delicately designed segmentation network can preserve the
detailed information as much as possible by reducing the number of downsam-
plings, and at the same time, using densely connected atrous spatial pyramid
pooling to capture and fuse multi-scale information as well as reserve large
enough receptive field, which can greatly enhance the feature representation
ability of the network. We also design three separate paths to handle different
resolution signal to train each path more effectively. A new training strategy
is also proposed to prevent the segmentation network from interfered by the
large complex background. Furthermore, we propose a localization network with
robust post-process scheme to distinguish thoracic discs and lumber discs. The
result of MICCAI 2018 challenge on IVD localization and segmentation demon-
strated the effectiveness of our proposed method.
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