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12.1 Benefits and Deliverables of CoCoME for the Outside
Community

CoCoME has been designed as a demonstrator for software systems to satisfy
research requirements on architecture modelling and evolution of the SPP1593
community. CoCoME is open to the research community. As a community case
study, CoCoME aims at providing several benefits to researchers of SPP1593 and
the outside community:

* By building upon existing specifications and implemented source code and
settings, less effort in scenario definition, study setup, and execution is required
by researchers.

* A common case study increases comparability of evaluation results to those of
other researchers and leads to increased evaluation confidence.

* A common case study also increases community acceptance by interaction with
other researchers.

CoCoME is limited in size and complexity; however, it shows all characteristics
of an information system used in industrial practice. Therefore, CoCoME provides a
trade-off between modelling complexity and evaluation effort. CoCoME represents
a comprehensive knowledge base for the evaluation process that can be exploited
and extended by researchers with different backgrounds and research interests. It
provides assistance on diverse characteristics important for software evolution, like
artefacts in different revisions, comprehensive evolution scenarios, and coverage of
different life-cycle phases. The distinct evolution scenarios specified for CoCoME
in the course of SPP1593 cover a wide range of adaptive and perfective changes to
the system and result in various deliverables to the outside research community.

The several evolution scenarios of CoCoME address a variety of changes to
the software architecture and infrastructure. For each scenario detailed description,
requirements specification, and design documentation in the form of technical
reports [HRR16, HKR18] are publicly available. The implemented source code in
Java is available on github! for each evolution scenario of CoCoME in SPP1593.
Furthermore, models to represent the structure (i.e. architecture) and behaviour of
the different variants of CoCoME in the form of PCM are deliverables of the priority
programme. These models can be applied for analysing and simulating CoCoME
with respect to different quality properties like performance, maintainability, and
security. In the following, we give a detailed description of models delivered to the
community by SPP1593 to represent the architecture, deployment, and behaviour of
CoCoME. Furthermore, we describe how the community applied CoCoME and the
models delivered by SPP1593 beyond the scope of the priority programme.

Thttps://github.com/cocome-community-case-study.
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12.1.1 Structural, Deployment, and Behavioural Models
of CoCoME

The architecture of a software system represents the design decisions during its
development and evolution [TMD+09]. Therefore, the architecture of a software
system can be considered as one of the main influence factors on its quality
properties such as performance, maintainability, or security [TMD+09]. The imple-
mentation of design decisions without knowing their effects can be a costly and risky
task. Thus, modelling the architecture of a software system and simulating the model
of the software architecture enable software architects to understand the effects of
different design decisions on software quality properties before implementation.
The software architect has to consider the following aspects while modelling the
architecture of a software system: its structure, its deployment, and its control
and data flow. The model of the software architecture can serve as the input of a
simulator [Reu+16, Ros+15].

Palladio is an approach for modelling and simulating the architecture of the
component-based software systems [Reu+16]. Palladio can predict the quality prop-
erties of the software architecture such as performance, maintainability, or security
at design time. Palladio is based on Palladio Component Model (PCM). PCM is
the architectural modelling language for component-based software systems. It was
initially developed to model and predict the performance properties of a software
system. In order to model the architecture of a software system, PCM provides
the following view types: (1) repository, (2) system, (3) resource environment, (4)
allocation, and (5) usage model [Reu+16].

To support model-driven approaches to predicting quality properties, we provide
PCM of the CoCoME architecture. These models were created for the hybrid cloud-
based variant of CoCoME describing its structure, deployment, and behaviour.

Modelling the Structure of CoCoME

CoCoME represents a component-based software system. A component-based
software system can be modelled by its interfaces and components and their
composition (also referred to as composite components) [Reu+16]. The hybrid
cloud-based variant of CoCoME consists of the following composite components:

* org.cocome.cloud.web

e org.cocome.tradingsystem.inventory

* org.cocome.cloud.webservice.inventory

e org.cocome.tradingsystem.cashdeskline

e org.cocome.cloud.logic.webservice.cashdeskline.
cashdeskservice

These components are composed of further composite components or individual
components. The current architecture model of the hybrid cloud-based variant
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of CoCoME contains more than 40 components. The architecture of CoCoME
was modelled using the system-independent structural elements of the PCM,
namely, components, interfaces, events, and data types. Additionally, the PCM
allows assembling the components and composite components to further composite
components. Thus, the current model of CoCoME can easily be extended to future
implementation (e.g. adding or removing components, interfaces, or data types).
Further, the PCM allows modelling the control flows in components at a high
abstraction level. Thus, the effect of different control flows (i.e. implementations
on a high abstraction level) on the quality properties of CoCoME can be analysed.
The repository view type of the PCM allows modelling the previously described
model elements.

After the software architect modelled the individual model elements, such as
components and interfaces, the architecture of CoCoME can be modelled by
assembling these model elements. Further, modelling individual elements allows
assembling other variants of CoCoME by different composition of existing model
elements, exchanging the model elements by other model elements, or adding new
model elements. Thus, the resulting architecture variant of CoCoME and its effect
on the quality properties can be determined at design time. The system view type
of the PCM allows assembling the software system using the individual model
elements defined in the repository view type [Reu+16]. Figure 12.1 shows different
components with their provided and required interfaces. The required and provided
interfaces are connected to each other using connectors.

The system model of CoCoME is composed of the previously described com-
posite components at the highest level of abstraction. CoCoME provides various
services as method invocation of its interfaces. The interfaces of the CoCoME
system are defined as follows:

e ICashDeskView: This interface mainly provides support for the selling
products and managing the express checkout.

e IShowReportView: This interface provides services for creating stock
reports.

e IReceiveOrderView: This interface allows handling ordered products,
which have been arrived, such as viewing received orders.

e IStockOrderView: This interface can be used to manage purchase orders in
the stock.

* IShowStockView: This interface provides services for managing stock orders,
such as the creation of a new stock order.

Modelling the Deployment of CoCoME

Using the PCM, the resource environment, such as resource containers or linking
resources, can be modelled. Further, the resource containers can be annotated with
values of different quality metrics, such as mean time to failure (MTTF) for the hard
disk or resource demands for central processing units (CPUs) [Reu+16, BKR09].
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The resource environment view type of the PCM allows modelling the resource
environment. Examples of resource containers for CoCoME are enterprise server,
store server, and web node.

After modelling the resource containers, the software architect has to determine
which components of CoCoME should be deployed on which resource contain-
ers. The system-specific deployment is specified by the allocation view type.
For example, the composite component org.cocome.cloud.webservice.
inventory can be deployed on the resource container enterprise server. It
is conceivable that different allocations between components of CoCoME and
resource containers are possible. Thus, simulation allows analysing the effects of
different allocations on the system’s quality properties.

Modelling the Behaviour of CoCoME

The usage model of CoCoME can be specified by the PCM behaviour view
type [Reu+16]. Modelling the behaviour allows specifying the interaction of users
with CoCoME. For example, different user interactions with CoCoME can affect
the performance of the software system. To enable the business process designers
to model the usage models, we provided a business process meta-model within
SPP1593. This meta-model extends the PCM usage model by actor steps and
the resource usage. The business process models allow analysing the effects of
changes in CoCoME on the interaction of its users [Ros+17]. This is especially
important when we analyse the maintainability of CoCoME regarding different
usage scenarios. The business processes can also to be used to analyse the
performance of the software system and its business processes [Hei+17a].

To model the business process, the PCM usage model is extended by the specific
elements of business process (hereafter referred to as business process usage model).
Business process can be considered as a set of connected activities. At the lowest
abstraction level, activities can be actor steps, system steps, or steps regarding the
resource device usage. The main difference between the actor steps and the system
steps is that the actor steps are completely performed by human actors, whereas
system steps are executed automatically by the software system. Further, human
actors can use the resource devices to perform their activities. Therefore, they
can acquire the resource devices before using or release the device resources after
using [Hei+17a].

The processes of CoOCoME can be modelled using the business process usage
model. The previously described services of CoOCoME are part of processes (e.g. sale
process), which CoCoME provides (cf. [Her+08a]). In the following we describe
different processes of CoCoME:

* ProcessSale deals with selling products. It can be considered as the main process
of CoCoME (cf. process 1 in [Her+08a]).

* ManageExpressCheckoutProcess describes the fast sale process for purchasing
only few products (cf. process 2 in [Her+08a]).
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e OrderProducts describes how new products can be ordered (cf. process 3
in [Her+08a]).

* RecieveOrderedProducts defines how to manage the arrived ordered products (cf.
process 4 in [Her+08a]).

» ShowStockReports describes the process of the creating the stock reports (cf.
process 5 in [Her+08a]).

» ShowDeliveryReports deals with creating the delivery reports (cf. process 6
in [Her+08a]).

* ChangePrice defines how the prices of products can be changed (cf. process 7
in [Her+08a]).

In the following section, we describe how the models of CoCoME can be applied
to analyse different quality properties.

12.1.2 Analysing Maintainability for CoCoME

The maintainability of a system can be considered as the ease of implementing
changes in that system [ISO10]. In other words, the maintainability of a system
in the case of a change request correlates with the set of system elements that
have to be changed [HBK18a]. As a community case study, several development
artefacts of CoCoME are available. Examples of such artefacts are code, require-
ment descriptions, and aforementioned models. Thus, CoCoME is well suited for
comparing different maintainability estimation approaches. The application of an
approach to CoCoME allows comparing it with other approaches that have been
applied to CoCoME. For example, if we have different maintainability estimation
approaches, which estimate a set of changed elements for a change request, we can
compare these sets with each other for given change requests. Thus, the application
of maintainability estimation approaches to CoCoME allows improving them
with regard to the change propagation analysis. Additionally, having a common
community case with its development artefacts allows analysing how the change
requests affect different artefacts [Ros+17].

The CoCoME models described in the previous section can serve as the input
of model-driven approaches to maintainability analysis in software systems. In this
context, the models describing the structure of CoCoME are especially important,
as the structure of a software system affects the change propagation in that
system [HBK18a]. Modelling CoCoME by components and interfaces in a fine-
grained manner improves the change impact analysis in the software architecture.

Software systems can be used to support business processes of organisations.
Therefore, there are mutual dependencies between the software systems and
the corresponding business processes [Ros+17]. Thus, we have to consider both
software systems and the corresponding business processes while analysing the
change impact. In addition to the structural models of CoCoME, the maintainability
estimation approaches regarding software systems and business processes can also
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use its usage models describing the behaviour of CoCoME. As described in the
previous section, the processes of CoOCoME are modelled as a set of connected actor
steps and system steps. This allows analysing the effects of changes based on the
mutual dependencies between the software system and the corresponding business
processes [Ros+17].

In the model of software systems, the structural model elements such as inter-
faces and components can be used to analyse the propagation of change [Ros+15].
In the model of business processes, the activities such as system steps and actor
steps can be used to calculate the change propagation [Ros+17]. Further, the data
flow plays an important role in change propagation [HBK18a]. The change can
propagate based on the data flow between a software system and its corresponding
business processes [HBK18a, Ros+17]. To model the data flow in CoCoME, we
modelled different data types in its software model and different data objects in its
business process model. As a data object can correspond to a data type and vice
versa, the models of CoCoME allow analysing the change propagation based on the
data flow [Ros+17].

To model the change request and to analyse the change propagation in terms of
affected model elements, we also provided a further meta-model—the modification
marks meta-model [Stal5, HBK18a]. Modification marks meta-model allows soft-
ware architects and business process designers of CoCoME to mark the initially
affected model elements (hereafter referred to as seed modification). Based on the
seed modifications, the task list can be generated automatically. The generated task
list contains a set of maintainability tasks, where each task refers to a model element
that is potentially affected by the change. The maintainability tasks are grouped
in different change propagation steps based on the cause of the change propaga-
tion [HBK18a]. Figure 12.2 illustrates a generated task list for the change request
modifying the interface IBarcodeScanner. Thus, the interface IBarcodeScanner is
the seed modification. Each task in the task list corresponds to a model element of
CoCoME. Further, Fig. 12.2 shows several change propagation steps. For example,

% cocome-cloud.modificationmarks £3
| Resource Set

¥ & platform:/resource/cocome-cloud-pem-model/modified/cocome-cloud.modificationmarks
¥ 4 Req Modification Repository
¥ 4 Req Seed Modifications
<4 IS Modify Interface "IBarcodeScanner”
» <4 BP Inter Business Process Propagation
» 4 IS Change Propagation Due To Interface Dependencies
» 4 IS Intracomponent Propagation
» < IS Intercomponent Propagation
» <4 IS Intracomponent Propagation
» <+ IS Intercomponent Propagation
* <4 IS Intracomponent Propagation
> & platform:/resourcefcocome-cloud-pecm-model/modified/cocome-cloud.repository
> & platform:/resource/cocome-cloud-pem-model/modified/cocome-cloud-sale-process.bpusagemode!
» & platform:/resourcefcocome-cloud-pecm-model/modified/cocome-cloud-manage-express-checkout.bpusagemodel

Fig. 12.2 Analysing the change propagation in CoCoME using the modification marks meta-
model
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business process (BP) inter-business process propagation indicates that the change
propagates only in the business process. This change propagation step contains only
business process model elements. As described previously the data flow may cause
the change propagation [HBK18a]. Information system (IS) change propagation due
to data dependencies in Fig. 12.2 refers to structural model elements of CoCoME
software system that is affected by the change due to the data flow. The change can
also propagate between the provided roles of a component and the required role of
other components (i.e. IS intracomponent propagation in Fig. 12.2) and between
the required role of a component and its provided role (i.e. IS intercomponent
propagation in Fig. 12.2).

12.1.3 Modelling Security Patterns and Attacks for CoCoME

Security plays a crucial role in systems with important assets like critical tasks
or such that includes personal information. Long-living systems going through
software evolution face security problems similar to any other quality requirements
which are open to degradation. It is very important to preserve the secure state of
a system, as itself or its environment, usage, configuration, etc. change, which can
affect directly or indirectly the correct functioning of security mechanisms. In such
cases, made design decisions for mitigating threats and addressing possible security
vulnerabilities can lose their validity. Furthermore, it would be worse if there are
no signs for such invalidations, so that the problem based on any change can be
first discovered after an attack occurs or a vulnerability is exploited. Hence, the
software engineers confront the degrading security, and addressing it becomes a
more challenging job, if any corresponding documentation of the security decisions
made and their assumptions do not persist over time.

As previously described, Palladio architecture models are historically developed
for performance simulations and analyses. However, being a model-based docu-
mentation of complex software systems and providing several abstract views (i.e.
repository, system, allocation, etc.), it also qualifies for investigating security. To this
end, we first use the security definition as a combination of confidentiality, integrity,
and availability [CH13], which can be interpreted on architecture models.

The approach PreReqSec [TH16a] supports software engineers and architects
to consider security as early as possible in the design time, which considers
runtime, configuration, or usage information. Further support is provided during the
software evolution, as the possible changes can be reflected upon the architecture,
where less complex but still powerful security analyses are possible. To this end,
security-related information is modelled as first-class entities on architectural level
in so-called security catalogues, which at the time are being developed for the
case study CoCoME. The hybrid cloud-based variant of CoCoME provides several
evolution scenarios, in which different aspects and entities of the system change (see
Sect.4.2). The corresponding architecture models are well suited for demonstrating
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the application of PreReqSec. In the following, we discuss two evolution scenarios
from a security perspective.

e Platform Migration: This evolution scenario migrates several local
resources (i.e. enterprise server and database) of the system to cloud for reducing
operating costs and providing flexibility in adaptation and reconfiguration.
However, it also introduces new challenges such as the privacy concerns or third-
party trust that might affect the confidentiality and availability. Furthermore,
providing such flexibility can make design time decisions obsolete. For example,
before cloud integration, the system had to handle all private data in local
servers, where no remote calls to data stored in cloud were necessary, which was
no subject for, e.g. man-in-the-middle threats.

e Adding a Pick-Up Shop: As the customer landscape and competition
between other providers grow, this evolution scenario provides new business
models such as online shopping and new use cases like online payment.
A completely new system interface is introduced. Hence, the attack surface
expands and new attack vectors become possible. These changes affect both
confidentiality and integrity as well as availability. As the very fundamental
requirements and therefore the system itself change, it becomes necessary to
validate the already-made security decisions as well as consider new ones.

Security catalogues within the PreReqSec approach can be used globally due to
their reusable nature, or they can also be project- or application-specific. A small
snippet from the security catalogue for CoOCoME can be seen in Fig. 12.3. The
catalogue is open for further development and also can be used in other web- and
cloud-based software applications.

Mainly, the catalogues consist of three parts corresponding to two different pillars
of security. These are the attacks and security patterns, which are combined by
so-called prerequisites. Prerequisites in the PreReqSec approach are structural and
logical information corresponding to assumptions or requirements that define in
which cases a threat can succeed or a security measure can mitigate a given attack.

Threat models provide information about vulnerabilities and possible attacks,
which are analogous to the usage profiles of the Palladio Component Model. They
are in the PreReqSec approach, a simplified version of usage models, which are
modelled as basic interface calls for maliciously getting into the software system.
Based on black-box modelling, we do not provide any further information once
the interfaces are passed, which is to be interpreted as the risk of any malicious
penetration through system boundaries. However, if necessary an attack vector can
be modelled with the help of profiling/stereotyping for representing more complex
attacks like advanced persistent threats (APT attacks). Based on the evolution
scenarios, a security expert provides the information regarding possible threats.

The security catalogue includes the following attacks: HTTP-Flooding,
SYN-Flooding, Persistent-Cross-Site-Scripting, or Cross-
Site-Request-Forgery.

On the other hand, security patterns (analogous to the well-known design
patterns) provide the necessary information for a structural solution to recurring
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security problems from the threat catalogue. Every security pattern consists of
structural roles. A role corresponds always to one or more software (or in some cases
hardware) components. It basically states that (in case) the related component fulfils
a specific task within the entire security pattern. To provide reusability and to be
able to use the security catalogues with any given architecture description language,
security patterns are separated from the system models and used profiling/stereo-
typing to connect the elements of security pattern (i.e. roles) with the corresponding
architectural elements (e.g. composite components, system interfaces). Due to these
separation of security patterns as well as attacks, the PreReqSec approach provides
a new security view.

After defining possible threats, security expert and software architect can first
check which of the already-made security decisions may become obsolete, since
they cannot mitigate the new threats. This is mainly a task within the security
analysis, which is at the time an ongoing development within the PreReqSec
approach. However, extending the documentation (i.e. security catalogues) is now
possible with the security expert and software architect. Based on their expertise,
state of the art, and security best practices, they make new decisions about possible
security patterns, which are able to mitigate the newly introduced or changed
attacks. Following security patterns are for the time being defined and modelled
in the catalogues for CoCoME, for which several extensions are planned directly in
CoCoME system models, such as:

* Role-based Access Control is a security pattern to provide secure
access control for different users to different assets. The pattern is structured
within several different elements from CoCoME like org.cocome.cloud.
webservice.LoginManager, org.cocome.tradingsystem.
inventory.data.UserManager or
org.cocome. tradingsystem.inventory.application.
UserManager.

* Proxy-based Firewall is a well-known firewall pattern for web applica-
tions.
org.cocome.cloud.proxybasedfirewall is the main component for
firewall security pattern. It is deployed on web node and traffics the communica-
tion of
org.cocome.cloud.web composite component.

After instantiating the attacks and security patterns, it comes to how to combine
them structurally. The combining elements between the attacks and security patterns
are the logical prerequisites, as previously described, which are used as parameters
for the analysis to validate the made security design decisions with respect
to possible changes or to design time unknown information. However, besides
the development of automated architecture-based security analysis, extending the
security patterns and threats with modelled prerequisites is an ongoing part within
this research. Due to highly considerable manual effort which involves many views
and roles, it makes a very steady foundation for considering security within software
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architectures and allows analysing this very important quality attribute without
having to code, deploy, or penetration test the software system under consideration.

12.1.4 Modelling and Analysing Data Flow for CoCoME

Software architects can analyse many quality properties of software architectures by
means of activities executed in the way a control flow defines. However, there are
quality properties such as compliance with data privacy constraints that are naturally
defined in terms of data and data flows. Ongoing research in the field of architectural
data flow analyses [Seil6] tries to leverage definitions data and its processing as well
as concise privacy constraint descriptions to determine compliance of architectures
with privacy constraints. CoOCoME serves as a case study for evaluating architectural
data flow analyses.

The pick-up shop evolution scenario implies many privacy constraints because it
introduces user-related data. In a first step, a subset of CoCoME about the creation
of reports has been chosen. Depending on the realisation of the use case, the store
manager might get access to data that (s)he does not actually need but are worth
protecting. This includes personal information about users. An access control policy
defines which roles have access to which data, which serves as an input for an
analysis. The second step is making exchanged data explicit and specifying the data
processing. As a third step, we create several realisations of the use case that imply
privacy violations and analyse them for violations.

Even if extending CoCoME by data and data processing requires considerable
effort, it is a good foundation for case studies in the field of data privacy. It
processes sensitive and non-sensitive data in various ways defined by the use cases.
Therefore, it defines a reasonable network of data processing operations and data
exchanges. However, the case study is not artificial but realistic, which allows to
draw conclusions about applicability.

12.1.5 Diagnosis of Privacy and Performance Problems
Jor the CoCoME Mobile App Client

Users of mobile apps expect fast response times and high throughput. However,
there are a lot of different mobile devices with different specifications, which makes
it hard to show adequate performance on each of them. Another important quality
property of mobile apps is privacy as lot of sensitive data is stored at mobile devices
and transferred over a bunch of different networks. Thus, observing and analysing
mobile apps for performance and privacy issues are crucial. The monitoring and
analysis approach proposed in [MHH18] is capable of identifying both privacy and
performance problems of mobile apps.
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The approach has been evaluated based on the mobile app client evolution
scenario of the CoCoME case study. In the mobile app client, the use cases
AuthenicateAppUser and ProcessAppSale have been executed. Monitoring data
for the use cases have been recorded and analysed for performance and privacy
problems in order to evaluate the accuracy of the analysis and overhead of the mobile
monitoring approach [MHH18].

12.1.6 Functional Decomposition for Identifying
Microservices in CoCoME

A big challenge in designing microservice architectures is to find an appropriate
partition of the system into microservices. Microservices are usually designed
intuitively, based on the experience of the designers. A systematic approach to
identify microservices in early design phase is described in [Tys+18]. The approach
is based on the specification of the system’s functional requirements and uses
functional decomposition to identify microservices.

CoCoME has been used as a case study for evaluating this approach. Starting
with the use case specification of CoCoME, system operations and state variables
have been extracted and clustered for identifying microservices. The clusters
identified by the proposed approach have been compared to microservices identified
by human developers based on the CoCoME source code and design documentation
(the component diagrams and sequence diagrams given in [HRR16]). For this
purpose, CoCoME has been applied as a case study at the Centre for Research and
Innovation in Software Engineering at Southwest University in Chongqing, China,
and the Karlsruhe Institute of Technology, Germany. The outcome of the functional
decomposition of CoCoME is analogous to the evolution scenario microservice
architecture.

12.1.7 Distributed Quality Property Optimisation for CoCoME

Software products must satisfy a considerable number of non-functional quality
properties, e.g. regarding performance and modifiability. It is known that quality
properties may conflict with each other. The reason is that software changes aimed
to improve one quality properties can and usually do have a negative impact on
another property. Hence, trade-offs between quality properties need to be managed
to achieve an overall accepted level of quality for the software product. Architecture-
based optimisation aims for evaluating such trade-offs in early design stages
[Ale+13].

CoCoME is being used as a case study for a novel distributed approach for
optimising quality properties of software architectures, in an approach called
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SQuAT [Rag+17a]. While the approach is property-agnostic, the evaluation focused
on the quality properties performance and modifiability. SQuAT builds on the idea
of scenario-based architecture evaluation [BCK12], which proposes to evaluate
architectures based on their ability to support quality scenarios. In the SQuAT
framework, so-called bots evaluate and try to optimise “their” respective quality
scenario. In multiple iterations, a moderator aims to support the mediation and
negotiation between the bots, by sharing solutions that can be further improved by
the bots to find a joint solution. SQuUAT employs model-based quality prediction,
currently focusing on the Palladio Component Model (PCM). It currently, support
two types of bots—one for performance and one for modifiability [Rag+17a].

CoCoME is used for a large-scale evaluation of the SQuAT approach, whose
basic effectiveness has been evaluated in a smaller study before [Rag+17a]. The
existing PCM are used with slight modifications. In total, eight scenarios are
defined—four for modifiability and four for performance. Accordingly, eight bots
execute to find an architectural CoCoME candidate by incrementally improving
architectural candidates, using modifiability and performance tactics.

While the case study is still in progress, it has already greatly helped to reveal and
resolve challenging situations related to the model size and topology in the SQuAT
framework.

12.1.8 Extracting Architecture Models of CoCoME

Software architecture models in different modelling languages were automatically
generated from the source code of the plain-Java variant of CoCoME in [Kon18].
These models and their generation serve as a showcase of architecture model
extraction using Codeling.” In this context, two types of architecture models have
been extracted—PCM and UML composite structure diagrams. The generated PCM
and UML models are available for the community.> Codeling is a tool that can
extract architecture models from the source code and maintain traces between the
model and the code. That is, when the model is changed, the source code is changed
accordingly. The source code that is not represented by the model is not lost during
this operation. For example, when a component is renamed, the corresponding
source code will still contain its operations and their implementation.

Code that follows the specification of a component framework—such as the Java
Enterprise Edition (JEE) [Oral7]—is forced to be structured in specific ways for
representing architectural elements such as components and their interconnection.
For example, any type of “bean” in JEE can be considered a component. Beans in
the JEE are Java class declarations with specific Java annotations. That means that
a class declaration in the program code, which has that specific Java annotation, can

2https://www.codeling.de.
3https://github.com/cocome-community-case-study/models/tree/master/Codeling/.
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be identified as a component. Codeling uses such predescribed code structures to
generate a translation model that complies to an intermediate architecture language
developed for Codeling. This translation model can be translated into multiple archi-
tecture description languages. Two architecture models of the CoCoME program
code were extracted. The plain-Java variant of the CoCoME program code was used
for this purpose. That variant actually does not follow any standardised component
framework but established a custom notion of components and other architecture-
related concepts. This project-specific component framework needed to be analysed
first, to find out which structures were used to implement architectural elements. In
the following sections, we present the models and briefly describe how they were
extracted from the program code with Codeling.

PCM Extracted from the CoCoME Source Code

In the first case study, PCM were generated, which allow for performance sim-
ulations of the architecture. The PCM defines multiple view types for modelling
an architecture. In this case study, we extracted the repository model, the system
model, and the instance models of CoCoME’s composite components from the code.
Neither the resource environment and allocation nor usage models for performance
simulations are encoded in the program code. These have to be added manually
for the purpose performance simulations. The originally planned architecture model
of the plain-Java CoCoME system is shown in Fig.4.5 on page 43. Figures 12.4
and 12.5 show the PCM repository and system, which were extracted from the
plain-Java CoCoME program code using Codeling. The repository contains all
identified components and composite components, alongside with their required
and provided interfaces and operations. For each composite component, the model
declares an instance of each subcomponent, correctly interconnected as defined in
the program code. These diagrams are not shown in the figures at hand. The system
diagram declares one instance of each of the top-most components in the repository
and interconnects them as declared by the program code. Provided interfaces are
propagated to the system’s context.

Step 1 Step 2 Step 3
4 ™\ B
Program Code Moezmslbifom i
Program o Preparations Model | Architecture
Code Translation Towards Target & 1 /1 Model

Model Language Architecture |

Model
< < J K 4

Step 6 Step 5 Step 4

Fig. 12.4 The CoCoME architecture in an PCM repository diagram, as extracted with Codeling
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Fig. 12.5 The CoCoME architecture in an PCM system diagram, as extracted with Codeling

The translation between the CoCoME source code and the intermediate language
is not complete in the sense that the event mechanism has not been translated.
Therefore, the component JMSEventBus is missing in this model as well as event-
based interfaces. Also, the data access components have not been translated in this
case study. The missing pieces could also be extracted, if the corresponding code
structures would be added to the Codeling. It should also be noted that Codeling
only extracts the model information. The layout has been applied manually in the
figures at hand.

For extracting the architecture model, Codeling uses the process shown in
Fig. 12.6. Konersmann [Kon18, Chapter 8] describes the process and all steps in
detail. Here we give an overview for understanding how the architecture models of
CoCoME were extracted. The process can be started from either the architecture
model or the program code. In the case of the CoCoME case study, an architecture
model was extracted from code. Therefore, here the process was started from the

program code.
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The process defines three main steps for each direction. For extracting an
architecture model, the following steps are executed:

Step 1 extraction of a translation model from the program code via an implemen-
tation model

Step 2 preparation of the translation model to the necessities of the target
language

Step 3 translation of the translation model into the targeted architecture mod-
elling language

In the step Program Code to Translation Model, a translation model is created
based on the source code. The step comprises substeps: First, an implementation
model of the source code is extracted. This model describes the implementation with
the terms of the component framework in use. As described above, the CoCoME
implementation uses a project-specific component framework. This framework
needed to be analysed first, to find out which structures were used to implement
architectural elements. Second, this model is then translated into a translation model,
which complies to Codeling’s intermediate architecture language.

In the step Preparations Towards Target Language, the translation model is pre-
pared for the targeted architecture modelling language. This is used to compensate
differences between component frameworks and architecture modelling languages.
For example, imagine a component framework, which requires deployment infor-
mation to be valid. In this step, minimal deployment information would be added in
the intermediate language to enable the translation. In the step Translation Model to
Architecture Model, the translation model is translated into the targeted architecture
modelling language, in this case study into a PCM representation.

When the architecture model is available, it can be viewed, analysed, and
changed with its original tools. For propagating the changes to the code, reverse
steps (steps 4 to 6) are executed, while following the traces collected during the
translation from the code to the model.

UML Models Extracted from the CoCoME Source Code

In the second case study, a UML composite structure diagram was generated from
the same translation model, effectively reusing the transformations between the
program code and the intermediate language. Parts of the transformation between
the intermediate language and the UML were reused from another case study. The
UML model extracted with Codeling is shown in Fig. 12.7. The arrows without a
keyword are ComponentRealization relations in UML.

The extraction of the UML model is based on the same translation model as the
extraction of the PCM. Therefore, the translation between the CoCoME source code
and the implementation model and the transformation between the implementation
model and the intermediate architecture language of Codeling can be reused from
the PCM extraction case study presented above. As these translations do not include
event-based communications and data management, these are also not included
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in the UML diagram. Translations between the intermediate language and UML
already exist from another case study, which translates between JEE program code
and a UML representation [Kon18, Section 10.1]. The UML is flexible to use, and
the use of the UML can vary in different contexts. The existing translations between
the intermediate language and the UML are project-specific in their handling of
composite components. Therefore, we derived a new, more general translation
between the intermediate architecture language and the UML.

The goal of the case studies presented above was to extract PCM and UML
models, respectively. The propagation of model changes to the CoCoME source
code was not intended, because the source code was considered legacy code, which
is not maintained anymore. Therefore, the translation from the model representation
to CoCoME source code structures was not implemented in these case studies.

12.1.9 Extracting Behaviour and Usage Models of CoCoME

Similar to the approach by Konersmann, the approach proposed by Langhammer et
al. in [Lan+16] and [Lan17] extracts static architecture models of CoCoME from the
source code. The automated approach by Langhammer et al. additionally extracts
behaviour and usage models in the form of PCM from very limited information like
source code and test cases. The PCM can then be used as an input to existing analysis
techniques like the aforementioned for performance, reliability, and maintainability.

The plain-Java variant of CoCoME has been applied for validating the accuracy
of the usage model extraction in [Lan+16]. Usage models have been extracted based
on existing unit tests for the use cases of CoCoME. An example of an extracted
usage model for the ProcessSale use case is given in Fig. 12.8. Further PCM for
specifying the system’s architecture and behaviour have been extracted in [Lan17].

12.2 Benefits and Deliverables of xXPPU for the Qutside
Community

The PPU and xPPU were developed to meet the research requirements on the
evolution in plant and machine manufacturing of the SPP1593 community. The
xPPU is open to the researcher community providing some promising opportunities
such as comparability of different approaches and facilitating the tackling of aspects
that are less frequently dealt with. Furthermore, an eased exchange of research ideas
and a simplified coordination are given.

The xPPU is limited in size and complexity but nevertheless provides a trade-
off between problem complexity and evaluation effort. To support different research
directions, the xPPU evolution scenarios were extended regarding more sophisti-
cated requirement modelling, as well as fault handling functionality. Evolution in
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Fig. 12.8 Usage Model of the ProcessSale use case extracted from unit tests [Lan+16]

xPPU not solely includes sequential development but also parallel and asynchronous
evolution; see Fig. 12.9. Due to the demand for higher throughput of workpieces
(WPs), Scenario 12a with a faster sorting of WPs is developed. A drive with
increased dynamics is installed to realise faster WP movement, which entails that
faster pushers are required for extruding WPs. In parallel, a customer demands an
adjusted variant of xPPU’s Scenario 12, which is able to handle larger and heavier
WPs. Furthermore, depending on the country, a machine or plant should be located
in, different supply and control voltage must be supported by field devices. Whereas
the existing xPPU is engineered to be located in Germany, a customer requests an
xPPU which can be operated with different supply and control voltage (as used,
e.g. in the USA). Accordingly, all field bus components, which are not capable
to handle the desired control voltage, have to be replaced. This results in another
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Triggering requirement Scenario Transportation belt Remarks
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Higher throughput of workpieces 12a ® ] ® Increased dynamics of pneumatics for

pushing WPs into slide resulting in different
time constraints for monitoring

Increase in workpiece size and 12b % 0 x Larger slide and increased pneumatic force
weight and dynamics
Different control voltage 12¢ x * 0 Different 1/0 modules required
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necessary

Fig. 12.9 Parallel evolution influencing mechanics (M), automation hardware (AH), and software
(S) [Vog+14a]

variant of the xPPU referred to as Scenario 12c. In addition, a typical variation point
driven by automation hardware is the requirement of a specific vendor platform, e.g.
Siemens or Rockwell. This aspect is reflected in Scenario 12d, which is a version
controlled by a vendor other than CODESYS platform. Besides the platform,
another typical variation driven by automation technology is the implementation
environment, i.e. whether the PLC software is, e.g. implemented according to IEC
61131-3 or IEC 61499. In Scenario 12e of the xPPU, an implementation framework
other than the currently applied IEC 61131-3 environment is used. In parallel to
these variants, Scenario 12f is more reliable due to the realisation of self-healing
functionality. To extend the business cases of plant and machine suppliers, a variant
supporting remote services is provided with Scenario 12g. To realise remote service
functionality, data logging and analysis techniques are required as well as the
possibility to remotely access operational data.

The different evolution scenarios of the xPPU targeting a variety of sequential
changes in system architecture and behaviour are publicly available. These scenarios
are documented with structural and behavioural models, PLC implementations in
classical IEC 61131-3 as well as implementations based on state charts in plcUML
(i.e. an alternative way to implement PLC software), Matlab/Simulink simulation
projects, mechanical CAD files, and describing products, processes, and resources
of the xPPU is available in Automation Markup Language (AML). Furthermore,
a technical report of the scenarios is available to allow the understanding of the
different evolutions capturing models as well as detailed description of changes in
each scenario [Vog+14b].
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12.2.1 Structural and Behavioural Design Models of the xPPU

The language profile SysML was developed to support the physical systems’
design [Esp+09]. SysML covers the modelling of functional requirements and
corresponding software applications as well as the modelling of non-functional
requirements [Fra+11]. SysML models consisting of class, state machine, and block
definition diagrams of the xPPU’s evolution scenarios are provided.

The SysML models of the xPPU are based on the ANSI/ISA S-88 standard
of batch process control [Com+95], published by the International Society of
Automation, and the OMAC State Machine, part of the Packaging Modelling
Language (Pack ML) standard [Are+06]. The ISA88 standard processes a recipe
of hierarchical management of batch control and frameworks to segment batch
manufacturing processes. The separation of product and process by the hierarchical
structure enables flexibility and reuse of equipment, as well as easier integration
of new equipment or alteration of the production flow. ISA88 separates batch
management into Procedural Control Model and Physical Model; see Fig. 12.10.

Physical Model Procedural Control Model

Enterprise

x

<l’ must contain

Site

T may contain

Area
A
T may contain
processing : .
Process Cell ———— = Recipe Procedure
5 ) )
] must contain T
. processing .
Unit Unit Procedure
T may contain ?
Equipment Module Operation
’]\ may contain_| ']\/
Control Module Phase

? may contain

Fig. 12.10 Overview on the ISA88 structure [Com+95]
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switch
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Fig. 12.11 Overview on the module structure of the PPU

The Procedural Control Model describes the production flow of the current
batch as it is linked to the physical equipment. This model consists of recipe
procedure, unit procedure, operations, and phases. The production flow of a single
unit is controlled by the unit procedure. Each unit has an exclusive operating unit
procedure, which is bound to this single unit. However, a single unit is allowed
to contain more than one operation, but only one operation can be active at a
time. An operation consists of a set of phases (tasks), which are allowed to run
simultaneously. The xPPU as a unit is part of a process cell. A unit is an independent
set of equipment, running a recipe and operating on a batch simultaneously.
Units must contain equipment modules, which could contain equipment modules
themselves. As a functional group of equipment, it fulfils a finite number of tasks,
only one activity at a time. Equipment modules are, for instance, the crane, the
conveyor, the stack, or the stamp. An equipment module contains control modules,
and these are the most basic elements of an equipment, such as motors, cylinders, or
valves (Fig. 12.11). The SysML models of the xPPU are provided as editable files
in the modelling environment “Papyrus” [Lan+09]; see Fig. 12.12. The models are
available for the community.*

12.2.2 Products, Processes, and Resources as Industry 4.0
Enabler for xPPU

The three viewpoints, products, processes, and resources (PPR), were initially sup-
ported by Automation Markup Language (AML) [SD09, SL15]. AML is extensible
in a way that it can be enriched with other data formats to increase acceptance

“https://github.com/x-PPU/Models.
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[Dra+08]. The topology of the production system and the included relations are rep-
resented by the use of CAEX, while CAD information is represented in COLLADA
and control related logic data is expressed in PLCopenXML [SL15]. AML and the
corresponding engineering process intertwine the different domains more closely,
increase flexibility, and reduce engineering costs [Liid+10, SL15]. Schmidt et al.
[Sch+14] also ascertained that an integrated approach like AML is more promising,
concerning a reduction in engineering costs, than further optimisations of individual
tools.

Schmidt et al. [Sch+14] also identified the main requirements towards a cross-
disciplinary exchange format in the same expert survey. Firstly, industry needs
a consistent, lossless exchange of data among heterogeneous engineering tools,
which is enabled by AML itself. Secondly, version management is necessary. This
is partially realised within AML but should be further supported by additional
tools [MB15, Ber+16]. And thirdly, the involved disciplines need means to ensure
consistency. This is not part of AML itself, but external reasoning tools are being
developed [Bif+14, Sab+16]. The AML architecture is structured into four parts
[SL15]. These are the role class (RC) library, the system unit class (SUC) library, the
interface class (IC) library, and the instance hierarchy (IH). The RC library defines
the general object semantics, the SUC library includes reusable components, and the
IC library defines relevant interfaces. Interfaces can thereby be either internal, i.e.
among different instances, or external, in which they reference external data such as
COLLADA files. Within the IH, finally, the actual project data is specified.

These three viewpoints PPR are closely interconnected and strongly influence
each other. At the example of the xPPU, the resource stamp executes the process
stamping on a product (i.e. workpiece). Within AML, engineers can express these
three viewpoints as separate hierarchies derived from the roles, product, process,
and resource, respectively. To connect these three hierarchies, engineers can use
the interface class PPRConnector [SD09]. If necessary, more specific subclasses
can be specified. Trentesaux et al. [Tre+13] propose to describe products via jobs,
i.e. processes, executed by machines, i.e. resources. This way of thinking conforms
to the PPR concept and results in appropriate role classes and four SUC libraries
in AML. The role classes for machines and products provide templates including
typical attributes such as the article number or weight for products. The process
role class library already provides different sorts of generic machine operations.
These range from logistics, exemplarily (un)loading, to manufacturing, exemplarily
stamping; see Fig. 12.13.

The three relevant SUC libraries are the product model, the process model, and
the resource model (Fig. 12.14). Within the product model, engineers specify the
products throughout all relevant stages in the production process. In case of the
xPPU, this includes, e.g. a “black plastic workpiece” but also the resulting “product
3”.

The process model defines jobs that can be executed by machines to realise
products. Jobs are defined as “sub-assemblies” by [Tre+13] and include production
steps. Jobs are included in the SUC library, because they may apply to different
products and can then simply be instantiated multiple times. Additionally, the
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Fig. 12.13 An excerpt of A ProcessRoleClassLib
process role class library = MachineOperation { Class Process }
v | [Rr] Loading { Class MachineOperation }

v [R]) Stamping { Class MachineOperation }
v Sorting { Class MachineOperation }
- Transporting { Class MachineOperation }
- Storing { Class }
Job { Class Process }
v [R) ProcessStructure { Class }
ProductionStep { Class Process }

Fig. 12.14 PPR of SUC a | @@ ProductMode!
library - Workpiece { Class }
v Product { Class }
v Intermediate { Class }
A ProcessModel
v [&g ProductionProcess { Class }
v [ Job{ Class }
v [s ProductionStep { Class }
a [ ResourceModel
v [s Plant{ Class }
v [s Crane{Class }
v [og Stack{ Class }
v Pusher { Class }
oo Stamp { Class }
= PicAlpha { Class }
v Conveyor { Class }
- Slide { Class }
v [5 Switch{ Class }

process model includes an SUC production process that is used as a superordinate
element in the instance hierarchy to group the jobs. The resource model finally
includes all available sorts of machines, namely, the crane, the stack, the pusher, the
stamp, the PicAlpha module, and the conveyor. Additionally, the machine model
includes the class plant for grouping the machines within the instance hierarchy.
To combine the three different points of view of the PPR concept, three interfaces
are derived from PPRConnector within the InterfaceClassLib. Connector Device-
Operation associates machines with production steps; Connector WPOperation
represents the connection between processes and their workpieces, i.e. their inputs;
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Fig. 12.15 Schema for PPR connections

Y ‘E ResourcelnstanceHierarchy
a [if] xPPU{ Class Plant Role }

w | [if] Crane{ Class Crane Role }
= [mStack{OmStacdee }
- [m Pusherl { Class Pusher Role }
p— [El Pusher2 { Class Pusher Role }
 [if] Stamp { Class Stamp Role }
« | [if] PicAlpha { Class PicAlpha Role }
« | [iE] Conveyorl { Class Conveyor Role }
w | [if] Conveyor2 { Class Conveyor Role }
- [m Conveyor3 { Class Conveyor Role }
- [m Conveyord { Class Conveyer Role }
w | [iE] Slidel { Class Slide Role }
w | [if] Slide2 { Class Slide Role }
w | [if] Stide3 { Class Slide Role }
w | [if] Stided { Class Slide Role }
w | [1f] Switch1 { Class Switch Role }
| [i] Switch2 { Class Switch Role }

Fig. 12.16 Representation of xPPU’s topology on instance level

and Connector ProductProcess is used to connect products to their respective
production processes (Fig. 12.15).

The three different SUC libraries have corresponding instance hierarchies, in
which SUC classes are instantiated to represent reality. The resource SUCs are
used within the instance hierarchy to represent the actual plant in the form of a
topology. This topology, which includes the crane, the stack, the pushers, the stamp,
the PicAlpha module, and the conveyors, is depicted in Fig. 12.16. A bird view of
the layout of the xPPU with its resources is presented in Fig. 12.17. The bird view
also depicts the paths of the various products.

The process instance hierarchy includes the production processes for the different
products. Each production process consists of at least one job, which, in turn,
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Fig. 12.17 Bird view of the xPPU
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Fig. 12.18 An excerpt of internal links of PPR of the xPPU

consists of at least one production step. Since attributes of the jobs, such as the
processing time, may differ depending on the product, the jobs are associated with
production processes and thus with products. The IH also include the links among
the PPRConnectors, which tie the different views together. Figure 12.18 gives an
overview of the links realised to represent the manufacturing of products 1, 2, and
3. These internal links also include all TransportConnections, which are used in two
ways. First, they are used to link resources, which can transfer products. That is,
all possible ways a product can take through a plant are represented. Second, every
sorting or transporting production step is connected to the resource that provides
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Fig. 12.19 Connections among resources and between processes and resources

the product (source) and to the resource the product is transferred to (drain); see
Fig. 12.19.

Changes in any of the three views may lead to changes in the other views, too.
For example, if Conveyor2 is not working anymore, it can be substituted by the
PicAlpha module. This is because the PicAlpha module can not only change the
order of products, but it can also fulfil a transport task from Switch1 to Conveyor3.
Thus, a redundancy concerning this specific task is created, and the alternative
production process may be chosen. Changes to a product may also propagate to the
other domains. Mainly, it will influence the associated production process, which
possibly influences the linked machines. Through the interconnectedness of the
different views, the propagation of changes can be easily traced.

12.2.3 Simulation Models for Testing

For each evolutionary stage, a simulation model was created in Matlab/Simulink
including an own 3D visualisation, which represents the behaviour of the real
demonstration system. The Matlab/Simulink models are available to the community
via an OPC interface (object linking and embedding for process control) with known
time constraints. An OPC interface is also available for the demonstration system
itself, in order to keep the cost of the conversion during the evaluation on the real
laboratory installation low. Alternatively, it is possible to create the control code
directly in IEC 61131-3 or the state chart diagram (CODESYS) and to evaluate
this simulation or the real system coupled to the OPC. Due to the properties of the
PPU, the OPC interface is sufficiently for most project approaches. In addition, a
PLC-based controller is available in the TUM laboratory for direct connection to
automation technology.
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12.2.4 Generating PLC Code Using UML Models

In the work of [Witl3], the authors provided a methodology to generate PLC
software based on UML diagrams. Therefore, the PLC software of the xPPU’s
evolution scenarios from ScO to Scl3 was generated based on UML diagrams.
The UML diagrams consist of UML class diagram for the implementation of a
PLC-project structure as well as state chart diagrams and activity diagrams for the
implementation of the behaviour of the elements of the UML-PLC (e.g. classes,
methods). This approach was implemented using the development environment
CODESYS. Moreover, the PLC code of the xPPU scenarios was developed
according to the international standard IEC 61131-3 [JT10], which is widely
used for programming PLCs in the domain of aPS, comprising five programming
languages: two are textual (the assembler-like Instruction List (IL) and the Pascal-
like Structured Text (ST)) and three are graphical (Ladder Diagram (LD) in the style
of circuit diagrams, Function Block Diagram (FBD), and Sequential Function Chart
(SFC)). The PLC code of the evolution scenarios of the xPPU is available for the
community.’

12.2.5 Detecting Anomaly Behaviour by Analysing Signal
Data of the xPPU

The available data set includes the values of the different variables in xPPU in each
time stamp, while it is working based on different scenarios (time stamp, variable,
value). The recorded variables are most of the time logical variables, which take
only zero or one values. However, there are a few variables like analogue sensors,
which have analogue values (e.g. analogue pressure). Since the most variables in
the data set are logical variables, it can be considered that the data set includes the
activation and deactivation information of the variables in each time stamp while
xPPU is running. This data set can be used for different purposes. One example of
the usage of this data is to recognise the cycle of activation (deactivation) of different
variables. Then it would be possible to check that during the activation (deactivation)
period of one variable, which other variables are activated (deactivated). It can
be helpful to recognise the dependencies between variables and detect what is
the consequent effect of activation (deactivation) of some variables on the other
variables. In addition, the hierarchical dependencies among variables can be useful
to get some information concerning the hierarchical structural of the plant using the
data-driven methods. For example, it can be found which part of a plant (including
special variables) is a subset of a larger part of the plant (with more variables and
longer activation period). By using both the dependencies between variables and the

Shttps://github.com/x-PPU/PLC_TwinCAT_Projects.
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hierarchical structure of the plant, it will be possible to detect the source of some
anomaly behaviours of the plant using the data-driven methods. In this case, we can
analyse that after the activation (deactivation) of some variables at the top of the
hierarchy, we expect to see the activation (deactivation) of which variables at the
bottom of the hierarchy. Then, this information can be used to predict the behaviour
of the plant, and if the behaviour of the plant is not based on our expectation, we
can see which variable (or variables) does not have a proper value, which leads to
abnormal behaviour.

The first approach, which is used to achieve this goal, is to derive a tree structure
from the data based on the activation (deactivation) period of the variables. In this
case, the variables are sorted from the longest activation (deactivation) period to
the shortest period. Then, we try to detect which variables with shorter period can
be seen during the period of the variables with longer activation (deactivation)
period. This hierarchy can lead to the shortest activation duration of one variable
(activated and deactivated immediately) at the lowest level of hierarchy. The Deep
First Search (DFS) algorithm is used to construct the tree structure based on the
activation (deactivation) period of variables. In this tree, the children of each node
can be considered as the set of variables, which are dependent to the variables in this
node, and they are activated (deactivated) after the variable in the parent node. Here,
there is an example to illustrate the method (Fig. 12.20). Based on the activation
period of the variables and DFS algorithm, the tree structure in Fig. 12.21 can be
constructed.

The first result of this analysis on xPPU data is provided and discussed with the
expert. Based on expert knowledge, most of the hierarchical relationships between
variables in the tree structure are meaningful. The next step of this analysis will
be to detect the anomaly behaviour of the plant based on the expected values and
dependencies between variables. It is worth mentioning that the proposed approach
can also be useful in analysing PLC software. In this case, the structure of the
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code, e.g. function blocks, can be considered as an input into the DFS algorithm.
Therefore, DFS tree can be constructed based on the function calls in each function
block. Parent nodes include the functions in high level of hierarchy which call some
other functions, and the called functions can be considered as the children nodes.
The benefit of this analysis is that it is possible to follow the code based on the
structure of the constructed DFS tree. In this case, we expect that a function call,
which is a child node, has to be done completely to make sure that the higher-level
function in the parent node can also be done consequently. This approach can be
useful to detect which function blocks in children nodes do not perform properly
which leads to the propagation of the abnormality to a higher level of hierarchy of
function blocks.

12.2.6 Maintaining Security of the xPPU

The middleware application that allows to remotely access and interact with the
xPPU demonstrator increases the opportunities for malicious users to compromise
the information and correct behaviour of the xPPU and its interacting parties
(e.g. CoCoME). Hence, it is necessary to improve the security of the middleware
application, as well as its environment in order to reduce the vulnerabilities
that might be exploited for malicious purposes. Within the context of the xPPU
demonstrator and CoCoME, an exemplary goal of this kind of malicious purposes
may be to provide erroneous information to both the xPPU and CoCoME which may
result in unnecessary production being carried out (e.g. a wrong number of product
orders being placed) that may increase costs, incorrect warehouse information
provided to the supply chain that may affect sales and generate disgruntled and
unsatisfied customers, and manipulation of the cyber-physical system that may
compromise the safety of personnel, among others.

The main focus of security from the point of view of an information system
developer or service provider is to protect against targeted attacks towards the
system. However, from the point of view of system integrators and asset owners,
the main focus is to correctly implement the security mechanisms provided by the
product vendors and integrate any changes that may be required based on system-
and domain-specific characteristics and requirements. Within the context of the
ongoing work of the xPPU demonstrator, these two points of view are considered
on the middleware application and the automation environment, respectively.

Many methodologies to elicit system requirements exist [Poh10, NEOO]. The two
methodologies most widely used to elicit security requirements are to carry out risk
assessments and derive them from well-defined documentation such as guidelines,
regulations, laws, or standards.

Risk assessments are commonly performed at later stages of the development
life cycle (e.g. after design) or after a system has already been deployed, as previous
knowledge of the target system and its assets is required. It also requires participa-
tion from multiple stakeholders and knowledge regarding the threat landscape that
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such assets may be susceptible to and their likelihood and impact. The goal of a risk
assessment is to identify appropriate countermeasures that allow to decrease both
security risks and unnecessary security costs.

On the other hand, security elicitation from well-defined documentation is more
straightforward. In this type of elicitation, the requirements are abstracted by
analysing such documentation and verifying its applicability to the target system
based on its characteristics, target environment, or specific security assets. The
goal of this type of elicitation is to prove compliance with well-known regulations.
This compliance may be important for accountability and/or product or system
certification.

As both the middleware application and the xPPU exist within the context of a
demonstrator and are located at a facility within a wider educational infrastructure,
it is assumed that the likelihood for any type of risk is unknown, as this may
depend on the infrastructure itself. Therefore, in order to identify their security
requirements, these are abstracted from well-defined documentation rather than
from a risk assessment.

The documentation considered to elicit these security requirements is the
ISA/IEC 62443 standards of Security for Industrial Automation and Control
Systems. This set of standards was selected as they are the de facto standards in
the industrial field. They are divided into multiple parts, two of which address the
two points of view previously mentioned.

The IEC 62443-3 parts target system integrators; hence, they are relevant to
abstract security requirements that can be applied system-wide (i.e. environment).
On the other hand, IEC 62443-4 parts target component developers or manufacturer;
hence, they are relevant to abstract component-specific requirements such as the
middleware application. These requirements are found in parts IEC 62443-3-3 and
62443-4-2, respectively.

IEC 62443-3-3 provides a set of security requirements that must be fulfilled for
specific systems based on their desired security level. On the other hand, IEC 62443-
4-2 provides a set of security requirements that must be fulfilled by components of
the system.

From these standards, a set of ten security requirements have been abstracted.
These requirements can be summarised in three classifications: security require-
ments to ensure secure communication among the interacting parties (i.e. PLC—
middleware—client), security requirements that ensure user authentication, man-
aged access control and accountability, and security requirements to ensure secure
and reliable session management.

The validation of these security requirements has been carried out implementing
the Secure Tropos methodology [MGMO5]. This methodology allows to analyse the
interaction among actors, tasks, goals, resources, and their dependencies in order to
better understand the system and possibly identify missing security requirements or
constraints that were not considered previously during requirement elicitation; see
Fig. 12.22.
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Fig. 12.22 Secure Tropos diagram [Tsc18]

The aforementioned security requirements involve modifications to the mid-
dleware application. These modifications ensure the protection of the application
against targeted attacks.

However, as it is well known from security incidents and other reports provided
by multiple research and analysis authorities [CS17, Corl7], the most common
approach to compromise a system is to exploit vulnerabilities. These vulnerabilities
may or may not be found on the targeted components. This occurs as security attacks
commonly exploit these vulnerabilities in unsuspecting or vulnerable parties (e.g.
system components or personnel) that provide means to reach the attack target.

In order to decrease system vulnerabilities, the requirements presented in IEC
62443-3-3 are relevant. From these requirements, a set of appropriate open-source
security solutions have been identified. These security solutions are being integrated



12 Case Studies for the Community 371

into the xPPU demonstrator in order to provide protection to key system components
and locations. One of these solutions is a vulnerability scanner (i.e. OpenVAS) that
allows, among other things, to scan system components in order to identify possible
vulnerabilities in them.

The usage of pre-existing security solutions provides seamless integration with
automation systems. Depending on the case, it may be possible to install them and
manage them without affecting the automation system itself during runtime. This is
especially important, as one of the many fears of security in industrial systems is
that they may negatively influence the performance or behaviour of the automation
system.

As the technological and threat landscape keeps changing, so must these security
considerations. Security, just as information systems, must evolve. The lifetime of
the hardware components of an automation system may last years, and the lifetime
of its software components may last months or years; however, the lifetime of
security is extremely unpredictable. Hence, it is necessary to continuously monitor
any new requirements that may arise in order to maintain the same security level
throughout the whole system’s lifetime.

12.3 Benefits and Deliverables of Industry 4.0 Demonstrator
for the Outside Community

Recent trends in industrial digitalisation, i.e. Industry 4.0, require the systems to
be connected with each other. In particular, boundaries between the information
systems and the production systems are blurred in this era. The Industry 4.0 demon-
strator (Chap.4) implements the common use cases of the information system,
which is represented by CoCoME, and the automated production system, which
is represented by xPPU. With the integrated case study, it can be demonstrated that
production system information is more visible and controllable from the information
system side and end user needs are more visible from the production side. Therefore,
Industry 4.0 demonstrator enables researches on the integrated environments such
as ordering a customisable product, creating a production plan for a customisable
product on multiple abstraction layers, and observing the progress of batch size on
productions. The CoCoME was extended to allow integration with an aPS plant. An
example of a plant is the interface offered by xPPU. Further, CoOCoME enables the
domain experts to use a mock-up of a plant without actually connecting a physical
plant. This allows simulating the integration using an arbitrary plant [Bic+18].
Furthermore, the xPPU was extended with the interface to be connected to the
remote users (including external systems). This interface allows the users to connect
to the xPPU over the web service either to run it or to gather some data about the
plant from the remote site without any effort to travel to the plant (see Fig. 12.23).
Also, uses can take the advantage of the model-based dynamic reconfiguration
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Fig. 12.23 Remote connection of the xPPU Industry 4.0 interface

implementation from this case study. In addition, security issues which might
happen on these interfaces are also envisioned and accessible (see Sect. 12.2.6).

The Industry 4.0 demonstrator shows the prototypical implementation of cyber-
physical production systems (CPPS) by containing the following characteristics
[VBF12]:

Architecture models: by using ISA88 architecture model for the plant that
provides hierarchical structure and process-based model for batches and coupling
modules and processes.

Data analysis: by allowing synchronising values over plants or systems as well
as gathering and transferring operation-related values (online and offline).

Flexible production unit: combining the generated services from the systems in
different ways support various recipes which allows flexible production.

Digital networks and interfaces for communication: by enabling both OPC-
UA connection to the PLC side and RESTful web service to the user side, the
middleware enables to connect the remote user to the plant (Fig. 12.24). The
middleware places between the xPPU side and the remote user side. Using this
connection, users can either execute the desiring operations (e.g. transporting
or sorting materials) or get information about xPPU (e.g. execution history or
archived variable values). Android mobile application® as well as a web page is
also available to ease the user connection (see Fig. 12.25).

Shttps://github.com/x-PPU/I4.0_Interface.
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Worldwide distribution of data, high availability, and access protection: on
both sides of the systems’ connection, security is implemented by setting
standard authentications.

Chapter 4 describes the architecture of the Industry 4.0 case study (i.e. the
integration of CoCoME and xPPU). This architecture can be used for applying
approaches to domain-spanning change impact analysis. An example of a change
can be the modification of the interface provided by the xPPU. This change can
propagate to CoCoME, which uses this interface. Further, the case study allows
analysing other quality attributes such as security or performance by the approaches
in Industry 4.0 context [Hei+18a].
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