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Abstract. Brain connectivity analysis during motor imagery (MI) tasks
has evolved as an essential and promising tool for its use in brain-
computer interfaces (BCI). Many approaches devoted to BCI systems
focus on the distinction between different MI tasks from electroen-
cephalogram (EEG) signals. However, given the non-stationarity of the
brain activity, the MI discrimination yields to different classification per-
formances between subjects. Here, we introduced an MI discrimination
system from EEG signals to reveal relevant brain connectivity patterns
associated with a specific MI protocol. Indeed, we employ a windowed-
based feature representation using the well-known Common Spatial Pat-
tern (CSP) technique. Then, the classification performance along tem-
poral windows is related to a Phase Locking Value (PLV)-based connec-
tivity measure. Obtained results show a remarkable relationship between
high classification performances and the subject coupling with the acqui-
sition protocol concerning the windows that present the MI stimulus.
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Brain connectivity

1 Introduction

Motor imagery (MI) is the cognitive process of thinking about an action with-
out motor execution. The characterization of MI tasks by mapping the brain
activity has aroused growing interest over the past few years due to its high
potential in brain-computer interfaces (BCI) applications, such as physical ther-
apy, rehabilitation, and assistive technologies [2]. Thus, the main cortical brain
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imaging techniques employed to measure brain activity are electroencephalo-
gram (EEG), magnetoencephalogram (MEG), and functional magnetic reso-
nance imaging (fMRI). Nevertheless, EEG is the most widely used technique in
BCI due to its advantages: non-invasive, low cost, and high temporal resolution.
Besides, EEG allows observing brain electrical activity changes associated with
specific stimuli. However, the development of BCI systems from EEG requires to
minimize its poor spatial resolution, which leads to the volume conductor prob-
lem and the non-stationary behavior of the brain activity [6]. In particular, such
non-stationary yields to performance variability regarding the studied subjects.

Most of the state-of-the-art approaches employ feature extraction techniques
based on spectral representation to code significant EEG patterns. Particularity,
frequency bands ranging from 8–30 Hz are used in MI tasks due to the rela-
tionship of the μ and β rhythms in sensorimotor tasks [6,10]. Also, data projec-
tions are employed to support MI discrimination, including Principal Component
Analysis (PCA), Independent Component Analysis (ICA), Filter Bank Common
Spectral Pattern (FBCSP), Common Spatial Pattern (CSP) [1,3]. Moreover,
connectivity representations like Phase Locking Value (PLV), Coherence, and
Granger Causality (GC) [6], are used to discriminate MI classes from brain con-
nectivity maps [5]. Next, given the feature space, classification algorithms have
been used for distinguishing between MI tasks, such as Linear Discrimination
Analysis (LDA), Neural Network (NN), Bayesian approaches, and Support Vec-
tor Machines (SVMs) [8,11]. Besides, some methods face the non-stationarity
in MI by choosing a predefined segment of the EEG signal. Although these
approaches obtain acceptable classification results, high variability in perfor-
mance among subjects persists. Moreover, there is a lack of quantitative rela-
tionships between a satisfactory MI classification, the recorded stimuli, and brain
patterns with strong activity. That is, there is no clear evidence of the differences
between the performance of the subjects to the coupling with the protocol and
its stimuli in MI paradigms.

Here, we introduce an MI discrimination system to enhance the identification
of relevant brain connectivity patterns and their relationships to the coupling of
the subjects with the MI protocol and its stimuli. In particular, our approach
comprises two main stages: (i) A CSP-based feature extraction to discriminate
from different EEG window segments, and (ii) a PLV-based connectivity analysis
to reveal significant dependencies among brain hemispheres concerning the most
discriminative window segments. Specifically, our proposal allows finding a rela-
tionship between the classification performance of the subject and its coupling
with the MI protocol. The obtained results show that subjects exhibiting accept-
able classification rates achieve the highest discrimination within the temporal
windows associated with the MI stimulus. Besides, in the mentioned segments,
these subjects present consistent connectivity patterns in the contralateral hemi-
sphere that seems to be related to the task under study. Otherwise, subjects with
low classification performances do not show connectivity patterns according to
the specific task; therefore, quantitatively it is demonstrated that their brain
connectivity patterns are not in agreement with the MI protocol.
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2 Materials and Methods

Let {Xl ∈ R
C×T }L

l=1 be an EEG signal set holding L trials with C channels
at T time instants. Moreover, each trial can be related to a given MI condi-
tion through the label vector y ∈ {−1,+1}L. With the aim to code short-time
discriminative patterns, a windowing process is carried out to divide each EEG
trial Xl into V segments of size R. So, at the l-th trial we built the follow-
ing set: {Zl,v ∈ R

C×R}V
v=1. In turn, to reveal relevant brain patterns related to

the studied MI paradigm, our EEG processing approach comprises two main
stages: (i) MI discrimination from EEG-based short-time features, and (ii) EEG
connectivity analysis in line with the MI acquisition protocol.

MI discrimination from EEG-Based Short-Time Features. Given the v-
th segment at the l-trial, we compute a supervised linear mapping based on the
well-known Common Spatial Patterns (CSP) algorithm. Namely, the CSP tech-
nique rotates the EEG channels through the matrix Wv ∈ R

C×C to avoid linear
dependencies among EEG channels while enhancing the separability between MI
classes. Thereby, the projection matrix at the v-th temporal window can be com-
puted by solving the following eigenvalue problem: ϑ+

v Wv = Δv(ϑ−
v + ϑ+

v )Wv,
where Δv = diag(λ1, λ2, . . . , λC) is a diagonal matrix holding the eigenvalues
(λ1 ≥ λ2 ≥ · · · ≥ λC), and ϑ+

v ,ϑ−
v ∈ R

C×C are the covariance matrices of the
input space for EEG trials belonging to the class +1 and −1, respectively. After-
ward, a feature matrix Hv ∈ R

L×2M is build for each temporal window, holding
row vectors hl,v ∈ R

2M as the log variance of the projected EEG channels:

hv,l = log

⎛
⎝diag

(
W̃ �

v Zl,vZ�
l,vW̃v

)

Tr
(
W̃ �

v Zl,vZ�
l,vW̃v

)
⎞
⎠ (1)

where W̃v ∈ R
L×2M contains the first and the last M eigenvectors of W , diag(·),

and Tr(·) stand to the diagonal elements and trace functions, respectively [3].
Further, an SVM classifier is trained to estimate the MI condition from the v-th
EEG window as follows: ŷl =

∑
hj,v ∈ Ωv

αjyjκσ(hl,v,hj,v) + b, where αj ∈ R is
the weight for the sample hj,v ∈ Ωv, Ωv is a set holding the support vectors,
b ∈ R is a bias term, and κσ : R2M × R

2M → R
+ is a Gaussian kernel function

with bandwidth σ ∈ R
+.

EEG Connectivity Analysis to Code the MI Protocol Coupling. We use
a measure based on brain connectivity, knows as Phase Locking Value (PLV), to
assess the interaction between different brain regions by means of phase synchro-
nization, that allows a straight comparison between the instantaneous phases of
two EEG signals. In particular, this step allows to highlight the relationships
between the classification performance of the subject and its coupling with the
MI protocol concerning the brain connectivity patterns within each temporal
segment. So, given a pair of input channels at the v-th window for the l-th
trial z,z′ ∈ Zl,v; the instantaneous phase vectors φ,ϕ ∈ R

R are computed as:
φt = arctan (H{zt}/zt) , being H the Hilbert transform function (analogously for
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ϕt) [12]. In turn, a PLV-based connectivity matrix K ∈ R
C×C can be computed

as follows:

kc,c′ =

∣∣∣∣∣
1
R

R∑
t=1

ei(φt−ϕt)

∣∣∣∣∣ . (2)

Lastly, to quantify the phase synchronization strength between EEG-channels
along the trials associated with an MI condition, the overall brain connectivity
matrices Ψ+

v ,Ψ−
v ∈ R

C×C can be computed as follows: Ψ ξ
v = E {Kl,v : ∀yl = ξ} ,

where ξ ∈ {+1,−1}.

3 Experimental Set-Up

For concrete testing, the proposed EEG processing approach is used to highlight
relevant spatiotemporal patterns from an MI discrimination task. In particu-
lar, the publicly available BCI Competition IV dataset 2a is employed.1 This
database is provided by the Institute for Knowledge Discovery (Laboratory of
Brain-Computer Interfaces) at Graz University of Technology and consists of the
recorded EEG data from 9 healthy subjects performing the MI task during one
trial. Each trial begins with a fixed cross on the computer screen accompanied
by a beep. At second 2, an arrow pointing left, right, down or up (MI of the left
hand, right hand, both feet, and tongue, respectively) is shown as a visual stim-
ulus on the screen during 1.25 s. Then, at second 3, the subject is petitioned to
perform the MI task until the fixed cross disappeared from the screen at second
6. A short break of 1 s follows, where the screen is blank (see Fig. 1(a)). EEG
signals are recorded from 22 Ag/AgCl electrodes positioned according to the
international 10/20 placement system. The signals are bandpass-filtered between
0.5–100 Hz and sampled at 250 Hz. Besides, a 50 Hz Notch filter is used. In this
work, we select only the first two MI tasks of the experimental paradigm (left
and right hands). Afterward, the EEG signals per each trial are down-sampled
at 128 Hz and filtered between 8–30 Hz using a 5th order Butterworth bandpass
filter to highlight the α (8–12 Hz) and β (12–30 Hz) frequency bands avoiding the
influence of muscle noise [6,10]. Next, we segment each EEG trial into six-time
windows of 2 s with a 50% overlapping through a Hamming window. Namely,
the EEG data is divided into six segments of equal length: 0–2 s, 1–3 s, ..., 5–7 s.

Further, the CSP-based representation is carried out on every window. We
fix the number of eigenvectors in the CSP algorithm to M = 4 [11]. Then, we
train a SVM classifier under a nested 10-folds cross-validation scheme, where
90% of the trials per subject are used as training set and the remaining 10% as
testing. The kernel bandwidth value is searched from the set [0.5σo, 1.0σo], where
σo ∈ R

+ holds the median of the Euclidean distances of the input space. More-
over, to evaluate the propagation of neural activity recorded in each trial, the
PLV is computed as described in Sect. 2. Besides, we perform a statistical test
to determine if there are statistically significant differences between the accumu-
lated electrical activity estimated (regarding the PLV connectivity values) from
1 http://www.bbci.de/competition/iv/desc 2a.pdf.

http://www.bbci.de/competition/iv/desc_2a.pdf
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the left and the right cerebral hemispheres. We test the null hypothesis, that the
two data samples are from populations with equal means, assuming a Student’s
t distribution with a significance level of 5% (p-value < 0.05).

4 Results and Discussion

Table 1 summarizes the classification results in terms of the accuracy and Cohen’s
kappa coefficient. Note that significant state-of-the-art works are shown for com-
parison purposes [3,4,8,9,11]. Concerning the introduced approach, we also dis-
play the number of the temporal window with the highest classification perfor-
mance and the p-value measuring the statistical differences of the PLV-based
connectivities between the left and the right hemispheres. As seen, our strat-
egy obtains the highest accuracy in average in comparison to the Elasuty et al.,
Liang et al. and Li et al. methodologies. Moreover, in these approaches, the MI
discrimination based on feature extraction is calculated for the specific time seg-
ment associated with the stimulus. Now, our MI discrimination system achieves
mean classification values along subjects between 62.53% to 93.19% for accuracy,
and 0.29 to 0.86 for the kappa coefficient.

Table 1. MI discrimination results for the BCI Competition IV dataset 2a. The accu-
racy and kappa coefficients are presented. Also, the window related to the achieved
classification is displayed for our approach. The p-value quantifies the statistical differ-
ence of the PLV-based connectivity between the left and right hemispheres (the lower
p-value the higher the brain connectivity differences).

Subject p-value Accuracy (%) Kappa coefficient (κ)

Our
approach

(win) Elasuty
et al. [4]

Liang
et al.
[9]

Li et al.
[8]

Our
approach

Ang et al. [3] Nicolas-
Alonso
et al. [11]

Abbas
et al.
[1]

S01 0.117 87.75 ± 6.69 (4) 76 62.13 88.19 0.76 ± 0.13 0.78 ± 0.02 0.82 0.70

S02 0.838 62.53 ± 11.57 (6) 45 67.86 64.58 0.29 ± 0.17 0.45 ± 0.03 0.39 0.45

S03 2.003e−5 89.12 ± 7.63 (4) 92 75.71 94.44 0.78 ± 0.15 0.86 ± 0.01 0.92 0.71

S04 0.860 73.72 ± 10.24 (4) 77 72.14 65.97 0.47 ± 0.21 0.47 ± 0.02 0.51 0.96

S05 0.040 86.79 ± 6.40 (3) 64 67.46 76.39 0.74 ± 0.13 0.63 ± 0.02 0.89 0.60

S06 0.035 67.42 ± 13.35 (3) 70 66.67 67.39 0.36 ± 0.24 0.32 ± 0.03 0.49 0.43

S07 0.004 83.34 ± 7.85 (5) 59 71.43 75.00 0.67 ± 0.16 0.85 ± 0.01 0.96 0.55

S08 8.464e−9 93.19 ± 5.66 (4) 98 78.57 88.19 0.86 ± 0.11 0.79 ± 0.02 0.96 0.61

S09 0.052 88.86 ± 7.99 (3) 80 70.00 88.89 0.77 ± 0.16 0.78 ± 0.01 0.81 0.57

AVG — 81.41 ± 8.60 (4) 73.44 70.22 78.78 ± 11.41 0.63 ± 0.16 0.66 ± 0.02 0.75 0.62

As a comparative evaluation of the approach proposed in Fig. 1 are showed
the statistical and connectivity analysis carried out for the best (S08) and the
worst (S02) subject, according to the classification results for the task left hand
MI per window. Remarkably, the lowest and highest performances are related
to the subjects 02 and 08, respectively. In fact, as seen in Fig. 1(b), the classifi-
cation performance along windows for the S08 evidence the expected behavior
concerning to the MI protocol, having its best result in the window (4) where
the stimulus appeared. Otherwise, the performance curve for the S02 shows an
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Fig. 1. Connectivity analysis for the best (S08) and the worst (S02) subject based on
classification results, in the left hand MI task discrimination. (a) MI protocol. (b) Visu-
alization of variability in classification performance throughout the temporal windows.
(c) Probability density function of the electrical activity associated with each cerebral
hemisphere from PLV-based connectivity values and (d) Connectivity maps showing
interactions between EEG channels for the windows 1, 4 and 6 for the best subject,
and analogously for (e) and (f) the worst subject.The dots of the plots (d) and (f)
represent the spatial distribution of the EEG electrodes on the sensorimotor area.
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indiscriminate behavior, having its worst value in this window. In this sense,
these results demonstrate that there is a direct relationship between the sub-
ject coupling with MI protocol and the classification performance. Figure 1(c)
allow us to see the probability density function of the accumulated connectivity
strength linked to each hemisphere in the windows 1, 4, and 6. We noted that
the distributions for the S08 are significantly different, while the S02 ones do
not reveal discriminative connectivity between brain hemispheres (see Fig. 1(e)).
Figure 1(d) and Fig. 1(f) display the connectivity maps for both subjects respec-
tively. The connectivity maps viewed are based on visualization function of the
Matlab toolbox HERMES.2 Notably, the connectivity distribution for the senso-
rimotor area shown in Fig. 1(d) and Fig. 1(f) corresponds to the following EEG
channels: FC3, C3, and CP3 in the left hemisphere; FCz, Cz, and CPz in the
middle, and FC4, C4, and CP4 in the right hemisphere. The observed behavior of
the networks generated by PLV for MI task, left hand, per subject varies slightly
due to the trials average activity recorded for the segments shown. After visual
inspection of the connectivity maps, per window, it is possible to observe the
different patterns of dynamic changes in the brain that are generated in subjects
08 and 02 in the states of concentration, execution of the MI task and rest-
ing, respectively. The patterns exhibited by the graphs in the middle, for both
subjects, represent the average activity measured for the segment between 3–5 s
where the brain activity associated with the MI task is mainly recorded. In this
sense, the best subject presents more activity in the contralateral hemisphere
to the task under study, that is, there is a greater representation of the connec-
tion between the nodes of the right hemisphere [7], which does not happen with
the worst subject allowing us to interpret with greater clarity the classification
results.

5 Conclusions

In this study, we employed an MI discrimination system to enhance the identifi-
cation of relevant brain connectivity patterns. Although different methodologies
based on feature extraction have been used for the distinction between MI tasks,
including connectivity analysis, it is not known why those classification systems
exhibit differences concerning their accuracy per subject. Our EEG analysis
strategy first makes a windows representation of the temporal information of
the signal. Then, consistent spatial patterns for MI discrimination are extracted
using CSP. Next, the spatiotemporal features are used as inputs to an SVM clas-
sifier. Finally, we use a PLV analysis based characterization of the segmented
EEG signals to reveal relevant brain connectivity patterns. Our approach focuses
on discriminating the spatiotemporal features associated with each MI task for
its subsequent visual interpretation employing brain connectivity estimators and
a statistical test. According to our results, subjects with higher classification
performances exhibited stronger activity in the contralateral hemisphere for the
MI task studied. As future work, we plan to test the proposed approach with
2 http://hermes.ctb.upm.es/.

http://hermes.ctb.upm.es/
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effective connectivity measures, e.g., Granger Causality, which not only indicate
activity between electrodes but also describe the influence that one signal exerts
over another. Moreover, to better code brain dynamics we propose employing
variants of Canonical Correlation Analysis (CCA) based on kernels [13]. This
type of analysis allows improving the robustness of classification systems and
provides greater flexibility through the use of non-linear relationships between
EEG signals.
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