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Abstract. Pectoral muscle and background elimination are common
steps for automated software in mammographic image preprocessing.
We investigate FCNs, U-nets and SegNets in the task of mammogram
segmentation, addressing three subtasks: pectoral muscle, background
and breast region segmentation. The MIAS and INbreast datasets were
used for evaluating Deep Neural Networks on the segmentation of these
regions. Several objective evaluation metrics were used in order to com-
pare our results with the ones available in the literature. State-of-the-art
results were observed in most comparisons, significantly surpassing the
baselines in most metrics. Best Jaccard values (in %) for Deep Learn-
ing algorithms were 89.7 ± 2.5, 98.4 ± 0.1 and 97.0 ± 0.4 for pectoral
muscle, background and breast region segmentation, respectively, in the
MIAS dataset. For INbreast, the best Jaccard value achieved for pectoral
muscle segmentation was 90.8 ± 2.5.

Keywords: Pectoral muscle segmentation · Breast segmentation ·
Mammography · Deep Learning

1 Introduction

Pectoral muscle segmentation has been used as a preprocessing step for breast
cancer analysis in Computer-Aided Detection/Diagnosis (CAD) systems. Due
to density similarities with potentially cancerous breast tissue, the rate of False
Positive results in detection tasks tends to increase [2,3,8,14]. The Medio-Lateral
Oblique (MLO) view of mammograms is the most affected by the presence of
pectoral muscles. Depending on anatomy and patient positioning during image
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acquisition, the pectoral muscle could occupy as much as half of the breast region,
or as little as a few percent of it. Pectoral muscles can appear concave, convex or
have irregular shapes in mammograms, possibly with homogeneous boundaries
between it and the breast tissue. Thus, pectoral muscle segmentation is a com-
putationally demanding task, requiring the algorithm to be able to discriminate
between different shapes, sizes and breast density variations. Other important
preprocessing steps in mammogram analysis are background and breast region
segmentation, which present challenges due to artifacts in the background of
Screen Film Mammograms (SFMs), the low-contrast of the skin-air boundary
region, and to large amounts of noise, mainly present in digitized SFMs [14].

Despite their success in many Computer Vision tasks, Machine Learning
methods have been noticeably absent in the mammogram segmentation body
of research. As shown by Ganesan et al. [4], preprocessing tasks rely mostly on
low-level techniques or simple statistical modelling, which may suffer from gen-
eralization/stability problems. Due to advances in high-performance parallelism,
Deep Learning-based methods have evolved to comprise the state-of-the-art of
most Computer Vision tasks and, recently, in Biomedical Image tasks [9].

The most recent survey [4] divides the methods used for pectoral muscle seg-
mentation into five categories: intensity-based methods, line detection, statistical
techniques, wavelet methods and active contour [3]. Further explanations of these
methods is out of the scope of this paper and, therefore, readers should refer to
Ganesan et al. [4] for a more detailed analysis of the state-of-the-art of mammo-
gram segmentation. Several factors hamper the comparison among methods in
the mammogram segmentation field. The main one is that there is not one stan-
dard set of metrics for comparison, so most of the literature uses only subjective
evaluation metrics for the segmentation results, such as non-standardized spe-
cialist assessments of segmentation quality. This problem is aggravated by the
lack of standardized datasets and ground truths, leading to the use of private
data, severely hampering the reproducibility of most results. The most recent
attempt to standardize the area was presented by Rampun et al. [14], which used
only objective segmentation metrics and publicly available datasets, as well as
ground truths obtainable upon email request. This work used active contour
for modeling both the background and pectoral muscle boundary layers. It also
comprised the state-of-the-art for the researched tasks, therefore it will be used
as the main baseline throughout this paper.

Ganesan et al. [4] argues that there is not one specific method which works
perfectly well for the problem of pectoral muscle segmentation. Therefore, follow-
ing recent advances in Semantic Segmentation [1,10,15], the main contribution
of this work is to evaluate Deep Learning-based approaches for mammogram
segmentation. Secondary contributions include: (i) State-of-the-art results in
pectoral muscle, background and breast region segmentation; (ii) Assessment
of the superiority in stability of Deep Learning methods compared to classical
approaches; (iii) Segmentation predictions and pretrained models are publicly
available online for future academic use and reproducibility.
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2 Deep Semantic Segmentation Approaches

Most Deep Neural Networks (DNNs) for image analysis has been based on con-
volution operations. Vanilla implementations of Convolutional Neural Networks
(CNNs) [7] are essentially stackings of three types of layers: convolutional layers,
pooling layers and fully connected layers. Convolutional and pooling layers are
often stacked in the beginning of these networks and serve as learnable feature
extractors, while fully connected layers play the role of the classifier at the end
of the network, as can be seen in Fig. 1. In the following paragraphs we introduce
the DNNs used in our experimental setup.

Fig. 1. Architecture examples for (a) FCNs [10]. (b) U-nets [15]. (c) SegNets [1].

Fully Convolutional Networks (FCNs). The most basic architectures [10],
they can be understood as a patchwise approach, wherein each pixel in an image
is a sample (Fig. 1a). Whole image fully convolutional training is identical to
patchwise training where each batch consists of all the pixels in a set of images.
Replacing fully connected layers by convolutional layers and adding a spatial
loss produces an efficient machine for end-to-end dense learning [10].

U-Nets. Ever since FCNs, several attempts to mitigate the vanishing gradient
problem have been proposed, most relying on alternative paths for informa-
tion flow [6]. Skip connections are the most common way to create alternative
paths, serving as highways for backpropagation to reach earlier layers in the
network without passing through all the layers in front of them. U-nets [15] take
advantage of skip connections to map higher-level contextual information to
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low-level pixel information. These networks are Encoder-Decoder architectures
wherein the downsampling half (Encoder) is symmetrical to the upsampling half
(Decoder), as shown in Fig. 1b. There is also a larger amount of feature channels
in the upsampling layers compared to FCNs, which allows for more information
to be propagated to higher resolution layers [15].

SegNets. SegNets [1], like U-nets, are Encoder-Decoder architectures for seg-
mentation with symmetric layers. The Encoder half of the network is composed
of VGG-like [16] convolutional layers. The construction of the Decoder network
is accomplished by simply mirroring the Encoder layers and replacing the pool-
ing layers for upsampling components (Fig. 1c). One main advantage of SegNet is
the use of the pooling indices in the upsampling processes. SegNet uses the max
pooling indices to upsample (without learning) the feature maps and convolves
with a trainable decoder filter bank [1].

3 Methodology

Mammographic Datasets. Following the experimental procedure described
by Rampun et al. [14], this paper’s experiments were performed only on publicly
available datasets. The main publicly available datasets are the Mammographic
Image Analysis Society (MIAS1) dataset [17], the Digital Database for Screening
Mammography (DDSM) [5], the Breast Cancer Digital Repository (BCDR) [11]
and the INbreast2 dataset [12]. Despite several attempts, we could not contact
the BCDR team for access to their dataset, therefore it was not possible to
run tests on these data. Also, to our knowledge, there are no publicly available
ground truths to DDSM images, which were also removed from the analysis. The
ground truths for the MIAS dataset were provided by Oliver et al. [13].

While DDSM, MIAS and BCDR are all SFM datasets, INbreast [12] is the
only one acquired with the Full-Field Digital Mammography (FFDM) technique,
rendering it the best dataset regarding image quality. This dataset contains
accurate pixelwise annotations for the lesions and pectoral muscle regions. A
total of 200 MLO images (from the 208 in the dataset) from INbreast were
used in our tests. The 8 remaining MLO mammograms were not used due to
problems with decoding the ground truths. All 322 images in MIAS were used in
our experiments. Our experimental procedure was performed on the three tasks
using MIAS and one task using INbreast (pectoral muscle segmentation). There
is no need for breast region nor background segmentation on INbreast images,
as the background can be easily segmented with a thresholding operation.

Experimental Procedure. We resized the mammograms and ground truths
to 256 × 256 pixels and slightly changed the U-net architecture (setting the
padding to 1) to receive these sizes of images. As the predictions of the DNNs
match the 256×256 pixel size, after forwarding the images through the networks,
1 https://www.repository.cam.ac.uk/handle/1810/250394.
2 http://medicalresearch.inescporto.pt/breastresearch/index.php/
Get INbreast Database.

https://www.repository.cam.ac.uk/handle/1810/250394
http://medicalresearch.inescporto.pt/breastresearch/index.php/Get_INbreast_Database
http://medicalresearch.inescporto.pt/breastresearch/index.php/Get_INbreast_Database
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we upsampled the images to their original sizes again. Results were obtained
using a 5-fold cross-validation methodology over the datasets. In order to avoid
artificially high results due to the similarities in breast structures of a subject,
fold division was done per subject, assuring that all images of a patient are
placed in the same fold. For each test fold, one of the other 4 training folds
was not used in training and served as a second validation step in order to
select the epoch with the best results. Details regarding the implementation
and hyperparameters of the DNNs can be found in the supplementary material.
Preprocessing was comprised only by the rescaling, normalization by mean and
standard deviation and by horizontally flipping some mammograms in order
for all images to have the same orientation. A simple post-processing of keeping
only the largest contiguous white region and filling the gaps on the DNNs’ binary
predictions was also applied and was observed to consistently improve the results.

Evaluation Metrics. Based on previous works, we used several different seg-
mentation metrics for validating the results. Rampun et al. [14] used Jaccard
(J̈), Dice (D̈), Accuracy (Ä), Sensitivity (S̈), Specificity (S̄) and Correctness
(C̈). Other works [2,3,8] rely mostly on FP and FN metrics. In order to com-
pare with all these works, we provide the values of all previously mentioned
metrics for FCNs, U-nets and SegNets in our results (Sect. 4).

4 Results and Discussion

Due to its thorough methodology and state-of-the-art results, the main baseline
used for comparison is the work of Rampun et al. [14]. The values for all metrics
are presented in percentages (%) for easier comparisons, as some metrics (mainly
FP and FN) yielded tiny proportional values, hampering the readability of the
results. For assessing the statistical significance of the results compared with
the baseline, we performed z-score hypothesis tests, as the number of samples
is relatively large (322 images for MIAS and 200 for INbreast). Full numerical
values for all metrics can be found in tables in the complementary material. In
order to improve reproducibility, the best pretrained models used in our exper-
imental procedure – as well as other complementary materials such as a script
for running the pretrained models on other sets of images and additional results
– are publicly available on our team’s website3.

Comparison with the Main Baseline. Figure 2 shows Confidence Intervals
(CIs) with p ≤ 0.05 for the J̈ and D̈ metrics in both INbreast and MIAS using
both DNNs and Rampun et al.’s [14] method. One can see that in all cases the
deep strategies obtained state-of-the-art results with D̈ and J̈ values close to
90% for pectoral muscle segmentation and accuracies for all tasks above 98%.
Background segmentation proved to be the easiest task, with J̈ values over 98%
and D̈ over 99%, configuring almost perfect background eliminations. One could
argue that breast region segmentation is the most important task of all three,
as most CADs are interested only on the breast region area, ignoring both the
3 http://www.patreo.dcc.ufmg.br/deep-mammography-segmentation/.

http://www.patreo.dcc.ufmg.br/deep-mammography-segmentation/
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background and pectoral data in the images. The best J̈ and D̈ values for this
task were of 97.01% and 98.46%, respectively, again yielding highly precise seg-
mentation predictions.
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Fig. 2. CIs for the MIAS dataset [17] in the pectoral muscle segmentation, breast region
segmentation and background segmentation tasks and INbreast [12] in pectoral muscle
segmentation. Vertical axis represents (a) J̈ and (b) D̈ metrics for p ≤ 0.05. The lower
end of the plot was trimmed at 75% to improve visualization of the CIs.

SegNet [1] and U-net [15] achieved similar results in most tasks and met-
rics, suggesting that both DNNs are good choices for these kinds of biomedical
image segmentation tasks. The FCN architecture with a VGG16 basis achieved
slightly lower results, but still was found to be significantly better than shallow
approaches in most metrics and tasks.

Standard deviation values for DNNs were typically around one order of mag-
nitude lower than the baseline, rendering deep segmentation schemes more reli-
able alternatives for fully automatic segmentation of mammograms. The only
case where Rampun et al. [14] surpassed the deep architectures in the J̈ and D̈
metrics was in pectoral muscle segmentation, even though the standard devia-
tions are considerably higher for the baseline. Results for the INbreast dataset
[12] showed similar trends to the ones for the MIAS dataset [17]. DNNs outper-
formed the baseline for almost all metrics, but Specificity, reaching significantly
better results than Rampun et al. [14] for all other metrics.

Comparisons with Other Baselines. It is hard to perform thorough com-
parisons between most papers in the area of mammographic image segmenta-
tion mainly due to the different evaluation metrics and the different datasets
and subsets of images selected for most papers [14]. Many works use either a
combination of FP and FN or custom metrics. One can see in Table 1 that deep
methods achieved state-of-the-art-results also in FP and FN results, surpassing
all methods in the FN metric with significantly better results. U-nets reached
significantly better FP values compared to the best baseline (Ferrari et al. [3]),
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with the advantage of not compromising the FN metric, while SegNets and
FCNs achieved comparable results in FP and vastly better results in FN . Also,
while other methods in the state-of-the-art achieved FP < 5% and FN < 5%
in between 50% and 60% of cases, FCNs, U-nets and SegNets reached this level
of accuracy in 97.8%, 98.1% and 98.4% of images, respectively. Besides vastly
larger percentages of images with FP < 5% and FN < 5%, no DNN predic-
tions had qualities worse than min(FP, FN) < 5% and max(FP, FN) > 10%.
Comparisons with other baselines can be found in the complementary material.

Table 1. FP and FN comparison with other baselines for pectoral muscle segmenta-
tion on MIAS [17]. FP and FN values are shown as percentages followed by standard
deviation, when available. Values followed by % represent the percentage of images
stratified according to the corresponding quality metric (row).

Metrics FCN U-net SegNet [2] [3] [8]

FP 0.68 ± 0.25 0.53 ± 0.16 0.62 ± 0.13 0.64 0.58 1.45

FN 0.39 ± 0.12 0.38 ± 0.12 0.30 ± 0.9 5.58 5.77 5.52

FP < 5% & FN < 5% 97.8% 98.1% 98.4% 51.2% 53.6% 57.1%

min(FP, FN) < 5% &
5% < max(FP, FN) < 10%

1.2% 1.2% 0.6% 22.6% 0% 33.3%

min(FP, FN) < 5% &
max(FP, FN) > 10%

0.9% 0.6% 0.9% 26.2% 0% 8.3%

5% < FP < 10% &
5% < FN < 10%

0% 0% 0% 0% 26.2% 0%

5% < min(FP, FN) < 0.10%
& max(FP, FN) > 10%

0% 0% 0% 0% 0% 1.2%

FP > 10% & FN > 10% 0% 0% 0% 0% 20.2% 0%

5 Conclusion

As far as the authors are aware, this paper reported the first use of Deep Learn-
ing for the segmentation of breast regions. We performed exhaustive tests using
three DNN architectures for semantic segmentation and compared the results
with state-of-the-art methods in the literature using several metrics and two
publicly available datasets. In an effort to improve reproducibility and standard-
ize the area, we only used objective evaluation metrics and provided a website
containing several supplementary materials, including segmentation predictions,
pretrained models and code for researchers to test the pretrained models in
their own datasets. Even though the amount of data used in our experiments
was suboptimal for deep methods, our experimental evaluation found that DNNs
significantly surpassed the baselines in most cases and presented much better sta-
bility, that is, lower standard deviations. Data Augmentation techniques should
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improve DNN performance even further, as these methods tend to better con-
verge with large sets of data. Most methods previously shown in the literature
rely mostly on simple image processing filtering and segmentation and often
stack several preprocessing and post-processing modules to the methodology.
Despite their expensive training procedure, DNNs have a more plug-and-play
nature, achieving state-of-the-art results with minimal pre and post-processing.
Also the cost of forwarding images in pretrained DNNs is very computationally
inexpensive, even without GPUs.

Future work includes a post-processing for shape regularization. Experimen-
tal evaluation also revealed that errors in distinct DNNs occurred in different
places, therefore a late fusion scheme should improve the results.
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