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Abstract. Imbalance classification requires to represent the input data
adequately to avoid biased results towards the class with the greater
samples number. Here, we introduce an enhanced version of the famous
twin support vector machine (TWSVM) classifier by incorporating an
extended dual formulation of its quadratic programming optimization.
Besides a centered kernel alignment (CKA)-based representation is used
to avoid data overlapping. In particular, our approach, termed enhanced
TWSVM (ETWSVM), allows representing the input samples in a high
dimensional space (possibly infinite) after reformulation of the TWSVM
dual form. Obtained results for binary classification demonstrate that our
ETWSVM can reveal relevant data structures diminishing overlapping
and biased classification results under imbalance scenarios. Moreover,
ETWSVM notably adopts the lowest computational cost for training in
comparison to state-of-the-art methods.
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1 Introduction

Imbalanced data refer to datasets in which one of the classes have a higher
number of samples than the others. The class with the highest number of samples
is called the majority class, while the class with the lowest number of samples
is known as the minority class. Traditional classification models tend to deal
with the minority class as noise, that is, the minority class inputs are deemed as
rare patterns. Besides, in several applications, i.e., natural disaster prediction,
cancer gene expression discrimination, fraudulent credit card transactions, the
non-identification of minority class samples yields to a massive cost [1].

Some machine learning approaches have been developed in the past decade
to deal with imbalanced data, most of which have been based on sampling tech-
niques, ensemble methods, and cost-sensitive learning [2]. The sampling tech-
niques are applied over data to balance the number of samples between classes;
this is done by eliminating samples from the majority class (under-sampling)
and/or creating synthetic samples of the minority one (over-sampling). How-
ever, these techniques can generate a loss of information by eliminating majority
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class samples, or overfitting due to the redundant information through gener-
ating synthetic minority class inputs [3]. Secondly, ensemble methods split the
set of the majority class in several subsets with a size equal to the minority
set. Then, this train as many classifiers as the number of majority class sub-
sets. These approaches usually archive competitive performance; but, the com-
putational cost is enormous since the number of classifiers to train [4]. In turn,
cost-sensitive approaches modify the learning algorithm or the cost function
by penalizing the misclassification of the minority class samples. Nevertheless,
these techniques lead to overfitting, since it tends to bias the minority class [5].
In recent years, a twin support vector machines (TWSVM)-based algorithms
take advantage of their generalization capacity and their low computational cost
by constructing two non-parallel hyperplanes instead of only one hyperplane as
the traditional support vector machine (SVM) [6]. Some TWSVM’s extensions
include a structural data representation a favor the generalization capacity of
the classifier [7]. Additionally, TWSVM-based approaches have been proposed to
counter the imbalanced data effect combining resampling techniques, coupling a
between-class discriminant algorithm, and weighting the primal problem to pre-
vent the overtraining [8,9]. Nonetheless, most of the TWSVM-based approaches
do not include a suitable reproducing kernel Hilbert space (RKHS)-based repre-
sentation, being difficult to incorporate an incorporate kernel approach within
the optimization. Thus, they neglect the intrinsic formulation and virtues of a
dual problem regarding kernel methods.

In this work, we propose a TWSVM-based cost-sensitive method that make
a kernel-based enhancement of the TWSVM for imbalance data classification
(ETWSVM), which allows representing the input samples in a high dimen-
sional space. Also, we use a centered kernel alignment (CKA) method [10] with
the objective of learning a kernel mapping to counteract inherent imbalanced
issues, reduce the computational time and enhance the data representation. As
benchmarks, we test the standard SVM classifier [11], a support vector machine
with slack variables regulated [5], a SMOTE with SVM [12], and a weighted
Lagrangian twin support vector machine (WLTSVM) [13] for binary classifica-
tion. Results obtained from benchmarks databases of the state-of-the-art show
that our approach outperforms the baseline methods concerning both the accu-
racy and the geometric mean-based classification assessment.

The remainder of this paper is organized as follows: Sect. 2 describes the
material and methods of the approach proposed for classification. Sections 3 and
4 describe the experimental set-up and the results obtained, respectively. Finally,
the concluding remarks are outlined in Sect. 5.

2 Enhanced TWSVM

Nonlinear Extension of the TWSVM Classifier. Let {xn ∈ R
P , yn ∈

{+1,−1}}N
n=1 be an input training set, where each sample xn can belong to the

minority class matrix X+ ∈ R
P×N+

(yn = +1), or to the majority class matrix
X− ∈ R

P×N−
(yn = −1), being P the number of features and N = N+ + N−
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the number of samples. The well-know extension of the SVM classifier, termed
twin support vector machine (TWSVM), relaxes the SVM’s quadratic program-
ming optimization (QPP) by employing two non-parallel hyperplanes, as follows:
f � (x) = x�w� + b� = 0, where � ∈ {+,−}, w� ∈ R

P is a normal vector con-
cerning f �(x), and b� ∈ R is a bias term. Traditionally, the non-linear exten-
sion of the TWSVM includes a kernel within the discrimination function as
f � (x) =

∑N
n=1 κ(x,xn)w̃�

n + b�, where w̃�
n ∈ R is the n-th element of the vec-

tor w̃� ∈ R
N , and κ : RP × R

P → R is a kernel function. Nonetheless, such
a non-linear extension does not consider directly a reproductive kernel Hilbert
space (RKHS) within the empirical risk minimization-based cost function of the
TWSVM, that is to say, it does not consider a mapping to a high dimensional
(possible infinite) feature space.

So, we introduce a non-linear extension of the TWSVM, termed NTWSVM,
optimization functional towards the mapping ϕ : RP → R

D, where D → ∞.
Thereby, the hyperplanes can be rewritten as: f � (x) = ϕ (x)�w� + b� = 0.
In particular, each hyperplane plays the role of a one-class classifier, aiming to
enclose its corresponding class. Next, the NTWSVM’s primal form yields:

ŵ�, b̂�, ξ̂�′
= arg min

w ,b,ξ

c1
2

(‖w‖2
2 + b2

)
+

1

2
‖w�Φ� + 1�b‖2

2 + c21
�′

ξ

s.t.
(
w�Φ�′

+ b1�′)
Δ�′

+ ξ� ≥ 1�′
, ξ ≥ 0; ∀�,�′∈{+,−},

(1)

where Φ� = [ϕ (xn)]N
�

n=1∀{xn | yn = �}, ξ̂�′ ∈ R
N�′

is a slack variable vector for
the l-th class; c1, c2 ∈ R

+ are regularization parameters, the first one regularizes
the slack variables and the second one the model parameters ŵ� and b̂� (rules the
margin maximization). Besides, 1� ∈ R

N�

is an all ones row vector, Δ�′
= �′IN�′

being IN�′ ∈ {0, 1}N�′×N�′
an identity matrix, �′ = −�, and ‖·‖2 stands for the

2-norm. Later, the Wolfe dual form of Eq. (1) can be written as follows:

α̂�′
= arg max

α
− 1

2
α�MBα + 1�′

α s.t. 0� ≤ α� ≤ c21�′
, (2)

where α̂�′ ∈ R
N�′

is a Lagrangian multiplier, M ∈ R
N�′×N�′

holds elements
Mnn′ = κ

(
sn, sn′|σ2IP+1

)
, κ(·, ·) is a multivariate Gaussian kernel, sn = [xn; 1]

is an extended column vector of the matrix S�′ ∈ R
(P+1)×N�′

, B ∈ R
N�′×N�′

holds elements Bnn′ = κ (sn, sm|Σ) , Σ =
(
c1ID�+1 + S�(S�)�S�′

(S�′
)�

)
, and

IP+1, ID�+1 are identity matrix of proper size. Hence, the NTWSVM hyper-

planes yields: f �(x) = d�BΔ�′
α̂�′

, where d ∈ R
N�′

holds elements dn =
κ

(
s, sn|σ2IP+1

)
and sn ∈ S�′

. Finally, the label of the new input is computed as
the distance to the closest hyperplane as y∗ = arg min

�∈{+,−}
|f � (x) |, where | · | stands

for the absolute value. It worth noting that due to the one-class foundation of
the NTWSVM approach, the distance to the hyperplanes are proportional to
the score magnitude.
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CKA-Based Enhancement of the NTWSVM. To avoid instability issues concern-
ing the inverse of the matrix Σ and to reveal relevant data structures for imbal-
ance classification tasks, we use a centered kernel alignment (CKA)-based app-
roach to infer Σ−1 = EE�, where E ∈ R

(P+1)×P ′
(P ′ ≤ P +1). In fact, we learn

E as a linear projection to match the kernels Kx ∈ R
N×N and Ky ∈ R

N×N ,
holding elements Kx

nn′ = κ
(
xn,x′

n | (EE�)−1
)
, Ky

ij = δ (yi, yj), being δ (·) the
delta function. Besides, the empirical estimate of the CKA alignment between
Kx and Ky is defined as [10]:

ρ̂
(
K̃x, K̃y

)
=

〈K̃x, K̃y〉F√
〈K̃x, K̃x〉F〈K̃y, K̃y 〉F

, (3)

where K̃ stands for the centered kernel matrix calculated as K̃ = ĨKĨ, where
Ĩ = I − 11�/N , I ∈ R

N×N is an identity matrix, and 〈·, ·〉F denotes the matrix-
based Frobenius inner product. Later, to compute the projection matrix E, the
following learning algorithm is employed:

Ê = arg max
E

log
(
ρ̂

(
K̃x, K̃y;E

))
. (4)

Lastly, given Σ−1 = ÊÊ�, the NTSVM is trained as above explained. For
the sake of simplicity, we called our proposal as ETWSVM. A MatLab code
of ETWSVM is publicly available1

3 Experimental Set-Up

Datasets and ETWSVM Training. A toy dataset comprising two classes belong-
ing to Gaussian distribution with a mean vector of 0 ∈ R

2 and a variance matrix
of 0.3I2, the minority samples are the samples with a probability greater than
0.7 and rest as majority one; and twelve benchmark datasets originating from
the well-known UCI machine learning repository are used to test the ETWSVM
proposed2. Table 1 displays the main properties of the studied UCI repository
datasets; the minority class is marked and rest as the majority one. As qual-
ity assessment, we employ the classification performance regarding the accu-
racy (ACC) and the geometric mean (GM) measures. The ACC is computed
as ACC = (TP + TN)/(TP + TN + FP + FN), where TP is the number of
samples belonging to class +1 and classified as +1, FN codes the number of
samples belonging to class +1 and classified as −1, TF is the number of samples
belonging to class −1 and classified as −1, and FP is the number of samples
belonging to class −1 and classified +1. Traditionally, The ACC measure is
used for classification, but it can be biased for imbalanced datasets. Therefore,
the GM is utilized to test imbalance classification as follows: GM =

√
ν × ζ,

1 https://github.com/cralji/ETWSVM.git.
2 https://archive.ics.uci.edu/ml/index.php.

https://github.com/cralji/ETWSVM.git
https://archive.ics.uci.edu/ml/index.php
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where ν = TP/(TP + FN) and ζ = TF/(TN + FP ). Besides, a nested 10-
fold cross-validation scheme is carried out for ETWSVM training. Regarding
the free parameter tuning, the regularization value c2 is fixed as c2 = N−/N+,
and the bandwidth is searched from the set σ ∈ {0.1σ0, 0.2σ0, . . . , σ0}, where σ0

is the median of the input data Euclidean distances. Note that our CKA-based
enhancement avoids the estimation of the c1 value in Eq. (1).

Method Comparison. As baseline, four classification approaches are tested:
SVM [11], SVM with regularized slack variables (SVM reg-slack) [5], SVM
with synthetic minority oversampling technique (SMOTE) [12], and a weighted
Lagrangian twin support vector machine (WLTSVM) [13]. All provided methods
include a Gaussian kernel. So, we infer the kernel bandwidth as in the ETWSVM
training. Also, the regularization parameter value is computed from the set
{0.1, 1, 10, 100, 1000} (for the WLTSVM technique we assume equal regulariza-
tion parameter values). On the other hand, the k value for the SMOTE algorithm
is fixed from the set {3, 5, 9, 10, 15} and the relationship between minority and
majority samples is set to 1:1. All the classifiers are implemented in MATLAB
R2016b environment on a PC with Intel i5 processor (2.7 GHz) with 6 GB RAM.

Table 1. Benchmark datasets from the UCI machine learning repository.

Datasets Imbalance ratio Features Data size Minority class

Haberman 0.3600 4 306 2

Housing 0.0743 13 506 1 (CHAS)

Vehicle 0.3076 18 846 Van

Transfusion 0.3123 4 748 1

Ionosphere 0.5600 34 351 b

Balance 0.0851 4 625 Balanced

Biodeg 0.5093 41 1055 RB

cmc 0.2921 9 1473 2:Long-term

Pima-Indians 0.5360 8 768 1

BankNote 0.8005 4 1372 1

Iris 0.5000 4 150 Iris Virginica

Wisconsin 0.5938 30 569 Malignant

4 Results and Discussion

Figure 1 presents the ETWSVM results on the toy dataset. As seen in Figs. 1(a)
and (b), which show the generated score by the minority and majority hyper-
planes, respectively; the majority hyperplane generates a higher score for the
samples associated with the minority class. Such behavior occurs reciprocally
between the minority hyperplane and the examples of the majority class. Indeed,
each hyperplane function is fixed depending on the slack variables of its coun-
terpart. Therefore, the minority class’s support vectors are selected from the
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(a) Class +1 hyperplane scores (b) Class -1 hyperplane scores

(c) ETWSVM boundaries
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Fig. 1. An illustrative example of the ETWSVM classifier. (a) and (b) show the scores
hyperplane. (c) shows the decision boundary, where the yellow zone is classified as +1
and the blue as −1. (d) support vectors. (Color figure online)

majority hyperplane meanwhile the majority class’s support vectors from the
minority one. Also, the Fig. 1(d) exposes the support vectors obtained, where
the majority hyperplane only requires three support vectors, but the minority
hyperplane chooses all the majority samples as support vectors to reveal the cen-
tral data structure. As expected, our ETWTSVM highlights the minority class
data structure holding a higher number of support vectors than in the majority
one. In turn, by combining the ETWSVM hyperplanes, Fig. 1(c) displays the
classifier’s boundaries that encodes the class patterns correctly.

Next, the attained classification results on the real-world datasets are sum-
marized in Table 2 concerning the ACC and the GM assessments. As seen, the
average ACC performances for the SVM reg-slack, the SVM, the SMOTE-SVM,
and our ETWSVM are closely similar. Nonetheless, the SMOTE-SVM and our
proposal achieve more reliable results regarding the standard deviation values.
Further, for the GM, which is preferred for evaluating imbalance data classi-
fication, demonstrates that the SMOTE-SVM and the introduced ETWSVM
allow revealing discriminative patterns to avoid biased results. Again, the low
standard deviation values of such approaches probe their dominance to cope
with imbalance problems. Notably, the CKA-based kernel learning in Eq. (4),
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Table 2. Classification results on the UCI repository datasets. ACC: accuracy, GM:
geometric mean. Testing scheme: nested 10-fold cross-validation.

Datasets SVM reg-slack [11] SVM [4] SMOTE-SVM [12] WLTSVM [13] ETWSVM

ACC ± std (%) ACC ± std (%) ACC ± std (%) ACC ± std (%) ACC ± std (%)

GM ± std (%) GM ± std (%) GM ± std (%) GM ± std (%) GM ± std (%)

Haberman 62.82 ± 08.52 71.53 ± 05.03 61.76 ± 05.20 59.49 ± 16.26 71.90 ± 08.88

53.42 ± 12.12 54.54 ± 09.53 56.24 ± 12.53 38.26 ± 22.86 57.70 ± 14.93

Housing 91.91 ± 02.68 88.55 ± 05.29 90.32 ± 03.65 44.86 ± 06.61 81.02 ± 07.61

63.36 ± 16.72 67.73 ± 27.57 66.31 ± 25.13 46.18 ± 18.18 72.11 ± 15.95

Vehicle 97.52 ± 01.42 97.88 ± 01.34 97.63 ± 01.48 82.39 ± 04.62 92.19 ± 01.79

97.66 ± 02.02 97.71 ± 01.79 96.85 ± 02.39 82.20 ± 03.96 93.33 ± 02.34

Transfusion 69.12 ± 04.05 68.04 ± 04.96 62.56 ± 10.27 35.95 ± 31.21 68.46 ± 06.65

64.78 ± 05.91 59.73 ± 22.00 51.91 ± 28.18 39.18 ± 33.89 63.92 ± 07.48

Ionosphere 94.59 ± 02.47 94.01 ± 02.51 93.72 ± 04.96 82.40 ± 06.80 89.76 ± 06.29

93.56 ± 03.11 93.12 ± 03.29 92.23 ± 06.71 82.49 ± 07.61 85.64 ± 09.83

Balance 90.70 ± 03.34 90.70 ± 03.15 83.83 ± 05.98 49.54 ± 20.70 59.71 ± 06.83

81.10 ± 18.90 57.32 ± 11.22 69.31 ± 13.40 52.49 ± 16.49 65.58 ± 12.86

Biodeg 87.02 ± 02.86 87.30 ± 02.98 87.77 ± 02.21 77.82 ± 02.21 59.00 ± 40.78

86.58 ± 02.78 86.49 ± 02.97 86.84 ± 02.71 75.23 ± 02.23 59.83 ± 41.33

cmc 26.75 ± 04.74 33.20 ± 03.16 67.82 ± 06.23 31.94 ± 22.44 61.71 ± 03.58

19.88 ± 17.54 31.69 ± 04.05 58.76 ± 21.07 31.71 ± 22.56 64.48 ± 04.08

Prima-Indians 25.26 ± 04.66 24.99 ± 04.30 72.78 ± 04.95 65.36 ± 06.95 73.29 ± 05.84

24.53 ± 05.56 24.47 ± 05.04 72.71 ± 04.60 68.27 ± 07.09 71.87 ± 06.23

Banknote 88.26 ± 03.66 92.34 ± 12.99 97.45 ± 01.89 91.84 ± 01.36 96.58 ± 01.65

88.65 ± 03.62 86.64 ± 30.46 97.42 ± 02.11 92.18 ± 01.28 96.72 ± 01.64

Iris 86.00 ± 09.14 99.33 ± 02.11 99.33 ± 02.11 99.33 ± 02.11 100.00 ± 00.00

73.92 ± 19.32 98.94 ± 03.34 98.94 ± 03.34 98.94 ± 03.34 100.00 ± 00.00

Wisconsin 51.34 ± 05.77 97.19 ± 01.49 97.18 ± 02.06 80.82 ± 05.55 97.01 ± 02.03

46.55 ± 09.22 96.96 ± 01.72 96.84 ± 02.30 81.54 ± 05.50 96.42 ± 02.31

Average 72.61 ± 25.83 78.76 ± 25.21 84.35 ± 14.35 66.81 ± 22.34 79.22 ± 15.47

66.17 ± 25.90 71.28 ± 26.02 78.70 ± 18.00 65.72 ± 23.11 77.30 ± 15.99

favors the ETWSVM hyperplane representation through a non-linear matching
between the input data dependencies and the output labels. Moreover, despite
that SMOTE-SVM reports the best GM performance in average, it requires
the higher computational time to train the classification system (see Table 3).
On the other hand, the GM results for the ETWSVM are competitive but
requires the lowest computational cost for training. The later can be explained
because our ETWSVM optimization takes advantage of the one-class foundation
of the straightforward TWSVM, while decreasing the class overlapping based on
the CKA matching. Finally, it is worth noting to mention that the ETWSVM
requires to fix few free parameters and solves two smaller sized QPP in compar-
ison to the state-of-the-art algorithms.
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Table 3. Classification results on the UCI repository datasets. Required time in seconds
for one fold training.

Datasets SVM reg-slack [11] SVM [4] SMOTE-SVM [12] WLTSVM [13] ETWSVM

HaberMan 06.50 ± 04.26 34.07 ± 32.22 114.73 ± 34.05 17.21 ± 00.42 03.59 ± 00.76

Balance 15.67 ± 02.91 01.58 ± 00.06 358.45 ± 190.86 42.53 ± 01.41 10.88 ± 01.62

Housing 111.11 ± 67.86 03.17 ± 00.28 1064.70 ± 126.78 21.78 ± 00.26 07.14 ± 01.44

Iris 00.29 ± 00.03 00.22 ± 00.03 01.36 ± 00.04 03.78 ± 00.07 01.72 ± 00.39

Vehicle 31.20 ± 16.03 21.83 ± 09.59 300.71 ± 49.30 75.96 ± 04.24 22.45 ± 05.84

Ionosphere 88.18 ± 78.22 102.79 ± 104.61 777.84 ± 161.20 12.60 ± 00.33 04.19 ± 00.15

Prima-Indians 162.53 ± 75.23 157.81 ± 50.10 1175.29 ± 141.30 60.93 ± 02.95 13.97 ± 00.70

Banknote 01.18 ± 00.96 01.96 ± 02.19 07.51 ± 01.98 278.07 ± 14.83 57.72 ± 09.77

Wisconsin 11.52 ± 07.18 12.16 ± 06.24 73.96 ± 27.75 31.97 ± 00.99 08.60 ± 01.54

biodeg 466.33 ± 126.19 581.15 ± 430.96 3688.18 ± 658.75 126.74 ± 09.69 39.80 ± 09.08

Transfusion 00.67 ± 00.40 03.95 ± 10.26 04.92 ± 01.11 50.68 ± 01.65 13.34 ± 03.63

cmc 02.34 ± 01.59 01.60 ± 01.06 15.20 ± 07.91 233.00 ± 09.44 67.65 ± 08.69

Average 74.79 ± 134.26 76.86 ± 166.28 631.90 ± 1051.79 79.60 ± 89.17 20.92 ± 22.14

5 Conclusions

In this study, we propose an enhanced version of the well-known twin support
vector machine classifier. In fact, our approach, called ETWSVM, includes a
direct non-linear mapping within the quadratic programming optimization of the
standard TWSVM, which allows representing the input samples in a high dimen-
sional space (possibly infinite) after reformulation of the TWSVM dual form.
Besides, a centered kernel alignment-based approach is proposed to learn the
ETWSVM kernel mapping to counteract inherent imbalanced issues. Attained
results on both synthetic and real-world datasets probe the virtues of our app-
roach regarding classification and computational cost assessments. In particular,
the real-world results related to some UCI repository datasets, show that the
ETWSVM-based discrimination outperforms most of the standard SVM-based
methods for imbalance classification and obtains competitive results in compari-
son to the SMOTE-SVM. However, ETWSVM notably adopts the lowest compu-
tational cost for training. As future work, authors plan to couple the ETWSVM
approach with resampling methods to improve the classification performance.
Moreover, a scalable multi-class extension could be an exciting research line.
Finally, a couple the ETWSVM approach with a stochastic gradient descent for
large scale problems.
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2. Loyola-González, O., et al.: Study of the impact of resampling methods for contrast
pattern based classifiers in imbalanced databases. Neurocomputing 175, 935–947
(2016)

3. Branco, P., Torgo, L., Ribeiro, R.P.: A survey of predictive modeling on imbalanced
domains. ACM Comput. Surv. 49(2), 31 (2016)
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