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Abstract. On-road object detection is one of the main topics in the
development of autonomous vehicles. Factors related to the diversity of
classes, pose changes, occlusions, and low resolution make object detec-
tion challenging. Most of the object detection techniques which have
been based on RGB images, have limitations because of the influence of
environmental lighting conditions. Consequently, other sources of infor-
mation have become interesting for undertaking this task. This paper
proposes an on-road object detection method, which uses 3D information
acquired by a LiDAR HD sensor. We evaluate a neural network architec-
ture based on PointNet for multi-resolution 3D objects. To carry this out,
a multi-resolution conditioning stage is proposed in order to optimize the
performance of the PointNet architecture applied over LiDAR data. Both
the training and evaluation processes are performed by using the KITTI
dataset. Our approach uses low computational cost algorithms, which
are based on occupancy grid maps for on-road object segmentation. The
experiments show that the proposed method achieves better results than
PointNet evaluated on a single resolution.

Keywords: Pedestrian detection · LiDAR · Deep learning ·
Resolution conditioning

1 Introduction

Traffic accidents are the first preventable death cause worldwide [8]. An emerg-
ing approach to solve this problem is autonomous driving [3]. In recent years,
there has been an increasing interest in autonomous vehicles. Based on Scopus
database, in 2017 more than 3,500 published papers show the interest of the
researching community.

One of the greatest challenges on autonomous driving is object detection,
which is needed to take driving decisions. Therefore, the autonomous vehi-
cles have integrated diverse devices to sense their environment. Commonly, an
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autonomous vehicle has GPS, encoders, inertial measurement units, cameras,
and LiDAR sensors [5]. The last two comprise an artificial vision system used
for object detection applications.

Since 2010, autonomous vehicles have incorporated 3D vision systems. Those
that stand out the most are LiDAR-based sensors, which reconstruct their sur-
rounding environment in three dimensions by using a point cloud representa-
tion. Some studies examined LiDAR as an option for object detection in an
autonomous driving environment by using a 2D LiDAR device [7,16]. Due to
the low resolution of 2D LiDAR sensors, most of these papers use this device
as a part of a sensor fusion scheme for object detection, where the main sensor
is an RGB camera. This scheme is limited by hard environmental light con-
ditions. Despite the 2D LiDAR low resolution, the papers that only use this
device, achieve good results on vehicle detection, but the information is limited
for detecting small objects. With the inclusion of a high definition LiDAR [14]
in autonomous driving platforms, there is a growing number of researchers, who
have exclusively used 3D information for on-road object detection tasks [1,6,17].

An early approach to the object detection on LiDAR data focused on hand-
crafted features. Those features are extracted by using different techniques [6].
However, as it is evident from object detection tasks based on RGB images, in
recent years, Deep Learning started to dominate 3D data object detection, too.

Based on a KITTI 3D object detection benchmark [], there have been a
number of studies, which involve Deep Learning that has reported the best
performance on different street object detection. Some methods listed in the
benchmark still use RGB images, even if these are only used for 3D region pro-
posals [9]. However, there are explorations which exclusively use LiDAR data
for object detection. One of the outstanding methods is VoxelNet. This method
applies voxelization of the entire point cloud in order to use it as an organized
representation on a Deep Net Architecture [17]. An approach more recently pre-
sented implements a multilayer bird’s eye view representation of the 3D point
cloud to use it into a convolutional network [1]. Despite its results, the represen-
tations used may lose information in the transformation process, which can be
essential on object detection tasks.

A novel approach for point cloud object classification and segmentation
has been proposed by Qi et al. in two architectures: PointNet [10] and Point-
Net++ [12], which exclusively and directly use raw point clouds. This architec-
ture is mainly based on a symmetric function to transform the point cloud into
an orderly invariant space. The PointNet architecture has shown good results
on object classification in benchmarks, such as ModelNet [15]. However, this
architecture has a limitation as for the number of points to be processed. This
architecture uses a fixed number for input points, which makes inefficient its use
on data with variable resolution. The data captured by a LIDAR sensor have
different resolution for different distances to object. This entails the necessity to
improve the PointNet architecture to use it in autonomous vehicle applications.

In this paper, a PointNet evaluation for on-road object detection is presented,
which uses LiDAR data. Our work has 3 main blocks. The first one, a 3D object
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generator, which segments a LIDAR point cloud scene into 3D on-road objects.
The second one, a multi-resolution conditioning stage, which adjusts each object
point cloud to a specific-resolution. And the third one, six PointNet models at
six different resolutions were trained.

This paper is structured as follows: Sect. 2 describes the methodology used
to design our method. And Sect. 3 contains the experimental results and conclu-
sions.

2 Framework Overview

Figure 1 represents the global architecture of our approach. Here, block 1 presents
the segmentation process, block 2 represents a resolution conditioning process,
and block 3 represents a multiresolution approach based on PointNet.

Fig. 1. General scheme of our traffic detection method by using a multi-resolution
PointNet architecture.

In the following sub-sections, each block on the Fig. 1 and some tools and
techniques needed for the process will be explained.

2.1 Segmentation

The elimination of the ground points is a necessary step for non-ground ele-
ment segmentation. For this purpose, a modeling of ground plane is done by an
algorithm named Random Sample Consensus (RANSAC) [13], which meets the
model of the plane that has the higher number of points into a defined distance.
The RANSAC algorithm is restricted by 3◦ from the plane defined by the Z axes
and the sensor position height. The result of applying the algorithm is presented
in Fig. 2b.

The occupation grid is an approach in 2 dimensions, which has been effi-
ciently used on pedestrian detection [6]. Starting with the point cloud without
the ground plane points, a mesh over the XY plane is established. The mesh
is defined by 20 cm by 20 cm2, taking 20 cm as a prudent distance in order to
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(a) (b) (c) (d)

Fig. 2. Segmentation process. (a) Original LiDAR point cloud frame. (b) LiDAR point
cloud frame after ground extraction. (c) Occupation grid representation with an object
bounding box. (d) 3D bounding box from occupation grid.

establish two point clouds as different objects. All the points on each square of
the mesh are projected into a single plane in order to use the number of points
into each square as input of the occupation array. To ignore very low resolution
elements, squares with less than 4 points are removed.

Figure 2c shows an occupation array where the white points represent 20 by
20 squares with more than 3 points. This array is treated by a connected region
algorithm to determine those groups, which compose an object [2]. From the
connected regions, the bounding boxes are extracted and these are transformed
into 3D bounding boxes giving an extra margin to avoid the loss of points as it
is shown in the Fig. 2d. The point cloud into each 3D bounding box is stored
with the label information, into an H5 format, which will be used by the Deep
Net architecture.

2.2 Resolution Conditioning

In order to take advantage of the parallel computing, the Deep Net architectures
use groups of information to compute it simultaneously by reducing the process-
ing time. This batch should be made up of information of the same size or shape.
By the nature of the point cloud 3D representation, each object in a given point
cloud has a different quantity of points and a group of different objects, which
will have a variable shape, for that reason, a resolution conditioning is required
to unify a batch size for a Deep Net training.

As our approach is based on multi-resolution, the data prepared to train our
method should be separated depending on the number of points, which compose
each object. As it will be explained on the deep architecture subsection, our
approach uses 6 different resolutions (16, 32, 64, 128, 256, and 512 points).
For objects with more than 512 points, a sub-group of 512 points is randomly
selected. For objects with points between 256 and 512, 256 points randomly
selected and the same is true for the rest of ranges except for objects that have
less than 16 points. In this case, points are aggregated to achieve the 16 points
resolution, which is made up by the most simple up-sampling procedure. This is
performed repeating the existing points in the object until the desired number of
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points is reached. Since the objective of this paper is to evaluate the performance
of the PointNet architecture, it is unwanted to improve the data, which is used
in it.

2.3 PointNet Architecture for Multiple Resolution Objects

Due to the multi-resolution of the objects represented by a LiDAR point cloud,
a method which can handle a highly variable point quantity is required. For this
purpose, a parallel architecture of point nets, which process separately point
clouds with six ranges of resolutions is established. This architecture learns spe-
cific features for each resolution, which takes advantage of the available informa-
tion on each object. Besides, this approach avoids the excessive down-sampling
or up-sampling, which is required by a single resolution PointNet.

The evaluation approach is made up of six PointNets, where each one will be
trained with different batch shapes. Finally, in the evaluation process, the trained
model will be selected depending on the quantity of points, which represents the
object to be classified. This ensures that the evaluation process will not have
more computation cost than a single resolution PointNet.

3 Experiments

3.1 Dataset

The data that is used on our approach was obtained from the KITTI vision
benchmark suite. The dataset has 22 sequences of LiDAR data, which repre-
sents 39.2 Km in diverse autonomous driving environments. From all the data
on the dataset, the 3D object detection benchmark selected 12,000 frames of
tridimensional information, which was acquired by an HD LiDAR sensor [4].
From these 29 Gb of LiDAR data, over 40,000 individual objects are extracted
and stored in an H5 format with its respective labels.

More than 30,000 objects in the dataset are small vehicles, which are labeled
as Car-Van. This implies a highly unbalanced database, which can hinder train-
ing process. To improve this issue, new examples from the existent data were
generated. It was performed by a sub-sampling process in order to simulate
different acquisition distances for the same object.

The existent examples, which have enough points, are randomly sub-sampled
in order to generate new objects simulating acquisitions distances of up to 70 m.
This process is performed on pedestrians, cyclists, and miscellaneous elements.
These classes have a low number of examples compared to the vehicles on the
dataset. At the end of the process, the data set is made up of 58,566 objects on
multiple resolutions. The dataset is divided in order to get 80% for the training
process and 20% for the evaluation.
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3.2 Training Process

The model, which is described in Subsect. 2.3, is trained in 6 stages and defined
by resolution groups. In order to individually establish the models, which would
process each resolution of point clouds, the training process was done by each
PointNet architecture separately. The 46,853 objects in the training dataset were
conditioned following the procedure described in Sect. 3.2. Since there are some
objects, which appear with an extremely low resolution, a threshold of eight
points was defined to leave out of the training process, that is to say, those
elements with less than eight points. To increase the training data, some of the
shelf methods to generate new point clouds from the existent data are applied
[11]. From each training object, a new object was created through a random
angle rotation over its Z axis, and other were created through adding a random
level of noise moving their points from 1 cm to 4 cm. The random noise added
to the new objects also gives some robustness in environments like mild frog or
rainy conditions. As our approach uses 6 PointNets, the training time increases
compared to a single resolution PointNet. The training time of our proposal was
near to the double of a single resolution PointNet trained with 512 points, about
45 h in a basic computer with a single GTX650Ti GPU.

3.3 Evaluation Process

To assess the performance of the proposed multi-resolution approach, the Point-
Net with all the testing dataset, in a single resolution architecture, was tested.
In order to keep the original information of the objects with a resolution under
the architecture defined, an up-sampling process by using repeated points was
applied. The evaluation process of the single resolution PointNet was performed
in six different resolutions, separately, in order to see the behavior of the detec-
tion across of each resolution. The results are presented in the first six rows
of Table 1. As it can be seen, the low resolution objects negatively affect the
performance of the PointNet object detector when it is used with 512 and 256
points. Nevertheless, the performance of this architecture is outstanding for the
data used for training and evaluation. Interestingly, the results shown in Table 1
indicate that the resolution where each class achieves the better results are not
the same. This means that if a model with a specific resolution is chosen, some
classes would decrease their score. As far as the experimental evaluation of the
multi-resolution architecture, the last row of Table 1 illustrates the performance
of the proposed method.

Taken together, these results show that even when the single resolution Point-
Net can have lightly better results on certain classes, our multi-resolution adap-
tion improves the general performance in 3.5% over the 32 points resolution
single PointNet, which is the best result for the single-resolution architecture.

To illustrate the performance over the KITTI dataset, in the Fig. 3 two frames
are shown with the detection results.
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Table 1. Classification results of PointNet on KITTI 3D object detection data set

Resolution\classes Average precision

Pedestrian Cyclist Car-van Truck-Tram Misc General

512 points 0,718 0,156 0,888 0,631 0,186 0,717

256 points 0,887 0,447 0,862 0,632 0,413 0,797

128 points 0,949 0,517 0,828 0,828 0,438 0,811

64 points 0,988 0,624 0,884 0,73 0,441 0,861

32 points 0,993 0,623 0,965 0,519 0,146 0,881

16 points 0,987 0,643 0,94 0,63 0,153 0,872

Multiple Res. 0,9899 0,7563 0,9507 0,7958 0,3742 0,9068

Fig. 3. Performance over KITTI 3D object detection dataset. Green boxes contain the
good predictions (Color figure online)

4 Conclusions

The PointNet architecture was evaluated on the detection of on-road 3D objects
using multiple resolutions of point cloud data, but without using any RGB infor-
mation. A proposed resolution conditioning of 3D objects allowed us to use
the point clouds representations of these objects on multiple specific resolution
nets. This proposed approach using multiple resolutions on PointNet architec-
ture yielded an improvement of 3.5% in general AP compared with the best
performance of a single resolution approach. On the pedestrian class, the aver-
age precision of detection was 99%, but it is worth to note that this class is easily
differentiable from the other objects because of its size characteristics. Future
work will entail labeling process in order to increase the number of classes of the
dataset, for example including classes like road signs and trees. With this, we
attempt to find a more robust detector over the most common on-road objects.
The labeling process should also have a data balancing purpose in order to
improve the training process.
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