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Abstract. This article introduces a novel region detector based on hier-
archies of partitions, so-called Hierarchy-Based Salient Regions (HBSR).
This approach enables to combine the clues given by a high quality con-
tour detector with a custom salient region detection procedure. The eval-
uation of the proposed method HBSR with a standard feature detection
assessment framework shows that HBSR outperforms the state-of-the-art
methods, in average. These promising results may lead to improvements
in many computer vision tasks.
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1 Introduction

The extraction of local image features is a conventional approach for providing
compact image descriptors that can be used to solve many computer vision tasks,
like image stitching, tracking, reconstruction, image retrieval. Some examples
of local features are edges, corners, ridges and blobs. The desirable qualities
of image features (e.g., repeatability, distinctiveness, accuracy) [13] are tightly
linked to the invariance properties of the detector (e.g., invariance to viewpoint,
to luminosity, and to compression). Some of the best-known feature detectors are
SIFT [5], SURF [1], ORB [12], MSER [6], Harris-Affine and Hessian-Affine [9]. In
this article, we present a local region detector based on hierarchies of partitions.
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Fig. 1. Main steps of the proposed region detector HBSR.

Existing feature detection methods based on hierarchies, like MSER [6],
TBMR [14], or TOS-MSER [2], rely on component trees (min-tree, max-tree,
and level-line tree) and thus on the study of the lightness of the image, seen
as a topographical relief. Here, we propose to replace the use of component
trees by hierarchies of partitions whose construction rely on the gradient of the
image. Actually, this approach allows us to take advantage of machine learn-
ing based contour detectors to obtain a high-quality multiscale representation
of the image from which we select salient nodes. The evaluation of the proposed
method, called Hierarchy-based Salient Regions (HBSR), with a standard feature
detection assessment framework shows that the proposed method outperforms
the current state-of-the-art on average.

This article is organized as follows. Section 2 presents the proposed method
and the fundamentals of hierarchy of partitions. Section 3 describes the eval-
uation framework used in Sect. 4 for the comparison with the state-of-the-art
methods. Finally, conclusions and future works are drawn in Sect. 5.

2 The Novel Region Detector

Ideally, in a hierarchy of partitions of an image, the scene is iteratively refined in
its objects, parts of the objects, parts of the parts, and so on. Thus, each region
(also called node) of the hierarchy should represent a salient element of the scene.
However, in practice, hierarchical representations are not perfect and generally
contain artifacts (regions that do not correspond to any meaningful element
of the scene) and redundancy (several nodes representing the same region with
slight variations). The proposed method aims at selecting nodes from a hierarchy
of partitions of an image by determining the salient nodes of the hierarchy and
then filtering redundancy among them (see Fig. 1). Finally, each selected node
of the hierarchy is represented by its best fitting ellipse.

2.1 Preliminary Definitions

In the sequel of this article, the graph G is defined as a pair (V,E) where V is
a finite set and E is composed of pairs of distinct elements in V , i.e., E is a
subset of {{x, y} ⊆ V |x �= y}. Each element of V is called a vertex or a pixel
(of G), and each element of E is called an edge (of G). The graph G provides a
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structure to the image spatial domain, i.e., V is the regular 2D grid of pixels,
and E is the 4- or 8-adjacency relation. We denote by W a function from E to
R that weights the edges of G. Therefore, the pair (G,W ) is an edge-weighted
graph, and, for any u ∈ E, the value W (u) is the weight of u.

A hierarchy (or dendrogram) H of G is a family of subsets of V such that any
two elements A and B of T are either nested or disjoint: i.e., A∩B ∈ {∅, A,B}.
Any element of H is called a node or region of H. The minimal elements of H are
called the leaves. The parent of a node N �= V of H, denoted by Parent(N), is
the smallest node N ′ of H that is strictly larger than N . Conversely, we say that
a node N is a child of its parent Parent(N). When the leaves, i.e., the nodes
without any child, of the hierarchy H forms a partition of V , then the hierarchy
can be represented as a sequence of nested partitions (see Fig. 1).

2.2 Selection of Salient Regions

We aim at selecting the salient regions from a hierarchy H obtained from the
weighted graph (G,W ). The result of this selection process is a new hierarchy H′

whose nodes are the selected regions of H. Salient regions are identified based on
three local features: size, contrast, and geometrical complexity. In the following
of this section, R denotes a region of the hierarchy H.

Size Criterion. The area of the region R, denoted by A(R), is defined as the
number of vertices in R (i.e., A(R) = |R|). We assume that a salient region
is neither too small nor too large, leading to the following selection criterion:
Amin ≤ A(R) ≤ Amax, with Amin and Amax two real parameters representing
respectively the minimum and maximum area of a salient region.

Contrast Criterion. We consider that the edge-weights of the graph represent
gradient values between pixels. The contrast being a relative measure of differ-
ence between the region and its surroundings, we use the gradient inside the
parent of the given region to estimate it. We define the depth of the region R,
denoted by D(R), as the maximal weight of the edges linking two vertices of
the parent region of R (i.e., D(R) = max {W (e), e ∈ E | e ⊆ Parent(R)}). We
assume that a salient region should have a significant contrast leading to the
following criterion: Dmin ≤ D(R), with Dmin a real parameter representing the
minimum depth of a salient region.

Shape Complexity Criterion. The ellipse is a common shape used to repre-
sent a region in an image [15], and a way to measure the geometric complexity of
a region is to quantify the difference between the real shape and its best fitting
ellipse. We define the shape complexity of R, denoted C(R), as the ratio of the
area of the best fitting ellipse of R (estimated with second ordered moments),
denoted by A(ER), with the area of R (i.e., C(R) = A(ER)/A(R)). We assume
that a salient region should have a low shape complexity leading to the following
criterion: C(R) ≤ Cmax, with Cmax a real parameter representing the maximum
shape complexity of a salient region.
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Thus, we use these criteria for identifying candidate regions on a given hier-
archy of partitions H. The result is a new hierarchy H1 composed of the regions
of H identified as salient:

H1 = {R ∈ H | Amin ≤ A(R) ≤ Amax, Dmin ≤ D(R), and C(R) ≤ Cmax}.

2.3 Filtering of Redundant Regions

The new hierarchy H1 composed by the salient regions of H may still contain
redundant regions, i.e., very similar nodes. The aim of the filtering procedure
presented in this section is to select a representative node from similar ones.
Thus, we propose a two-step procedure to perform this selection:

– Similarly to [14], we identify topological changes in the hierarchy as regions
having at least two children. Indeed, when a region of the hierarchy has a
single child, it cannot be viewed as the decomposition of an object into its
parts. Therefore, the single child of this region is discarded. Formally, this
process leads to a new hierarchy H2 defined by:

H2 = {R ∈ H1 | Ch(Parent(R)) ≥ 2},

where Ch(Parent(R)) is the number of children of the parent region of R.
– Then, we discard a node when its shape is similar to the one of its parent. The

dissimilarity between the shapes of two regions is evaluated by computing the
relative difference of the area of their best fitting ellipses. This leads to a final
hierarchy H3:

H3 =
{

R ∈ H2

∣∣∣ |A(ER) − A(EParent(R))|
A(EParent(R))

≥ DSmin

}
,

where DSmin is a real parameter representing the minimum dissimilarity
between a region and its parent.

The final set of detected regions is composed of the best fitting ellipses of the
regions of H3. Regarding the computational cost, the detection of salient regions
and the filtering of the redundant regions can be computed in linear time with
respect to the number of vertices in the graph G.

3 Evaluation Framework

We rely on the framework of Mikolajczyk et al. [8] to provide an objective assess-
ment of the proposed method. The framework is associated with a dataset of
eight image sequences, with six images each. The dataset includes five types of
transformations: viewpoint changes (a) & (b); scale changes (c) & (d); image
blur (e) & (f); JPEG compression (g); and illumination (h) (see Fig. 2).
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Fig. 2. Some examples for each sequence of the dataset. (a) Graffiti, (b) Wall, (c) Boat,
(d) Bark, (e) Bikes, (f) Trees, (g) UBC and (h) Leuven.

For each image sequence of the dataset, the framework compares the regions
provided by the detectors on the first image of the sequence with the ones
obtained on the other images of the sequence. Two measures are used as
follows:

1. the repeatability score which evaluates the theoretical performance of the
detector by calculating the ratio of the number of correspondences between
regions of the two images and the number of proposed regions. Given two
regions, we say that there is a correspondence if the overlap error between
their best fitting ellipses is small; and

2. the matching score which evaluates the practical performance of the detec-
tor by calculating the ratio of the number of correct matches in the feature
space and the number of proposed regions. A match between two regions is
considered correct if they are nearest neighbours in the feature space, and if
they have the smallest overlap error.

4 Experimental Analysis

In this section, we discuss the experimental results showing some illustrations
of our region detector and the quantitative comparison between the proposed
method HBSR and the state-of-the-art methods.
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4.1 Experimental Setup

In the following experiments, an image is represented as a 4-adjacency graph from
which a Quasi-Flat Zones (QFZ) hierarchy [7] is computed. QFZ hierarchies
are naturally invariant to photometric changes and geometric changes (up to
quantization effects). A quasi-flat zone of the weighted graph (G,W ) at level
λ ∈ R is a maximal set of vertices such that, between any two of its vertices,
there exists a path along which the maximal weight is λ. The set of quasi-flat
zones of the weighted graph at all levels λ forms the quasi-flat zones hierarchy
of the weighted graph. According to [11], we chose to use the Structured Edge
Detector (SED) [4] in order to weight the edges of the graph: indeed this detector
offers good performances in combination with quasi-flat zones hierarchies on
natural images while being fast to compute. To further improve the invariance
of the salient region detection process (in particular, the definition of the depth
of a region), we propose to perform a histogram normalization of the gradient
produced by SED. Note that, the QFZ hierarchy can be efficiently computed in
(quasi) linear time from the graph weighted by SED [3,10].

The proposed region detector has five parameters, which were optimized to
maximize the average of the repeatability and matching scores on the evaluation
dataset: the minimum area (Amin = 0.08), the maximum area (Amax = 0.25),
the minimal depth (Dmin = 22), the maximal shape complexity (Cmax = 1.1),
and the minimum dissimilarity (DSmin = 20%). Note that the area parameter
are expressed as a percentage of the total image size.

4.2 Quantitative Assessment

In this section, we assess the proposed method HBSR within Mikolajczyk et al.
framework [8]. We provide quantitative results and a discussion about the invari-
ance of our method, against geometric and photometric changes, by analyzing
the results of each sequence of the dataset separately. The proposed method
is compared to four state-of-the-art region detectors: Harris-Affine [9], Hessian-
Affine [9], Maximally Stable Extremal Region (MSER) [6], and Tree-Based Morse
Regions (TBMR) [14]. The Harris-Affine and the Hessian-Affine are two related
methods which detect interest points in scale-space based on the Laplacian
operator. The MSER and TBMR detectors both operate on hierarchical rep-
resentations of the images called min- and max-trees that represent the minima
(respectively maxima) of the image and their merging order as the brightness
increases (respectively decreases). While MSER looks for long branches of the
hierarchy with small area variations, TBMR searches for topological changes
(critical points of the lightness function) in the hierarchy. Figure 3 shows the
regions provided by our detector on some images of the evaluation dataset. We
can see that the proposed detector produces a reasonable number of regions
corresponding to well identified shapes of the scene.

Table 1 shows the results of repeatability and matching scores. The results
obtained on each sequence are presented separately in order to analyze the results
of each geometrical or photometrical change. We can observe that HBSR is
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Fig. 3. Detected regions (yellow ellipses) by HBSR, the proposed region detector, on
images from the Boat and the Wall sequences. (Color figure online)

Table 1. Repeatability and matching scores. Each value represents the average repeata-
bility of the five results of each detector for each sequence.

Sequence Harris Hessian MSER TBMR HBSR

Repeatability Graffiti 39.69 47.10 64.48 52.07 41.13

Wall 44.63 49.17 55.13 53.63 64.42

Boat 49.28 59.21 50.69 42.04 49.73

Bark 60.94 75.98 48.73 63.03 30.00

Bikes 56.52 73.25 57.12 50.46 87.35

Trees 50.25 55.39 39.61 40.24 70.00

UBC 80.37 86.12 50.01 45.69 71.11

Leuven 56.27 67.50 77.85 68.50 76.78

Average 54.74 64.22 55.46 51.96 61.32

Matching Graffiti 16.26 20.45 48.31 36.96 28.50

Wall 19.33 26.63 37.90 34.35 42.08

Boat 24.68 31.04 35.49 27.83 41.89

Bark 33.38 45.67 26.16 38.43 30.00

Bikes 30.62 38.29 42.27 28.09 82.46

Trees 9.02 12.78 17.11 11.55 70.00

UBC 64.10 70.44 41.28 27.91 66.67

Leuven 30.55 34.93 65.59 52.83 64.50

Average 28.49 35.03 39.27 32.24 53.26

Average score 41.62 49.63 47.37 42.10 57.29
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particularly robust to blurring (Bikes and Trees sequences) where it obtains
best repeatability and matching scores. Luminosity changes (Leuven sequence)
and JPEG compression artifacts (UBC sequence) are also very well handled with
repeatability and matching scores very close to the ones. The proposed method
also manages to deal with moderate viewpoint change on highly textured images
(Wall sequence) very well (first on both scores). Significant viewpoint changes
(Graffiti and Boat sequences) are however moderately well handled with average
scores. Finally, the main weakness of the proposed method appears with large
viewpoint changes combined with smooth surfaces (Bark sequence) where the
SED contour detector fails to detect any meaningful contour, hence leading to
the absence of meaningful regions. Furthermore, Table 1 also shows aggregated
repeatability and matching scores in terms of average on the eight sequences.
We can see that our method obtains the best average score, with an average
repeatability very close to the best method and with an average matching score
significantly higher than all other methods.

5 Conclusion

We presented HBSR, a local region detector based on hierarchies of partitions,
that allows us to take advantage of high-quality contour detectors. We proposed
several heuristics to select and filter redundant regions from a hierarchy of parti-
tions to obtain robust, relevant and multi-scale regions of an image. Our exper-
iments show promising results, with better average results than state-of-the-art
methods. In future works, we plan to improve the node selection method further,
to experiment with other hierarchies of partitions, and to apply the proposed
method to various computer vision tasks.
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