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Abstract. This work investigates the use of Dirichlet series in the mod-
eling of texture images, with application in image classification. The
proposed model is based on a strategy that associates each pixel with
its corresponding color (gray level in our case) to a vertex of a complex
network and the gray level dissimilarity within neighbor pixels with edge
weights. The degree distribution of such network is known to be very
effective in providing image descriptors. Here, we propose an improve-
ment over this technique, by working on this distribution as a Dirichlet
(exponential) series and varying the exponential parameter. A family of
statistical measures are extracted from the series and compose a fea-
ture vector employed here for texture image classification. In our tests,
the achieved accuracy is promising when compared with other state-of-
the-art approaches in different databases classically used for benchmark
purposes.
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1 Introduction

Texture images have been one of the most important elements in computer
vision systems during the last decades, with numerous applications in material
sciences [4], physics [12], medicine [16], geology [15], biology [18], and many other
areas.

Even though texture image (or visual texture) is not a concept defined in
rigorous terms, there exist some consensual points that such type of image is
supposed to follow. One of the most important of such points is the locality,
i.e., the idea that most information conveyed by a texture is confined within the
limits of a local neighborhood around each pixel, i.e., in local pixel patterns.

The locality property is one of the main motivations for the modeling of tex-
ture images using complex networks, more specifically, by “small-world” models
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like those proposed in [2]. There, the image pixels are associated to vertexes in
the network and the initial graph is complete (fully connected) with weighted
edges. The edge weight corresponds to a normalized distance between pairs of
corresponding pixels that takes into account both the spatial separation and
the gray level dissimilarity. The dynamics of the image is analyzed by apply-
ing successive threshold values to the edge weight, in such a way that more and
more edges are removed, making the network more and more sparse. Finally, the
authors in [2] propose that the distribution of degrees in this family of networks
can be used to provide texture descriptors. They apply such descriptors in image
classification with great success.

Despite the accuracy achieved by the degree distribution, other measures
extracted from complex networks based on histograms are more suitable to
describe global information yet they are usually not sufficiently precise to repre-
sent the local picture. In this way, we propose in this study the use of Dirichlet
series [7] to control the locality of the distribution by means of a carefully chosen
parameter. This is a classical series where a succession of terms are powered to
an exponential parameter and accumulated into a summation.

The proposed method, dubbed Dirichlet Complex Network (DCN) descrip-
tors, employs the values in the degree histogram of the network as terms in
the Dirichlet series and takes partial sums from that series to provide image
descriptors. The accuracy in texture classification is tested over two bench-
mark databases (UIUC [9] and USPTex [3]) and compared to other state-of-
the-art descriptors, namely, Local Binary Patterns (LBP) [13], LBP+VAR [13],
Bouligand-Minkowski (BM) fractal descriptors [1], Local Phase Quantization
(LPQ) [14], Binarized Statistical Image Features (BSIF) [8], and the original
complex network (CN) descriptors in [2]. Our proposal is competitive when com-
pared with all the other compared methods in both databases. The results con-
firm our expectation about the potential of Dirichlet exponentiation as a means
of evidencing complex statistical relations that are not explicit in the original
histogram.

2 Related Works

Most methods for texture recognition in the literature can be divided into local-
based (e.g. co-occurrence matrices [6], local binary patterns [13], bag-of-visual-
words [19] and their respective variations) and multiscale approaches (e.g. mul-
tifractals [20] and fractal descriptors [3], spatial pyramids [10], scale-invariant
feature transform [11], and others).

Complex networks represent in this context a paradigm that allows a com-
bination of both local and multiscale viewpoint over the image. The most well-
known and successful method in this category is that presented in [2]. Despite
the success of basic statistical quantifiers as those used in [2], more recently the
literature have presented more advanced techniques to better express the net-
work model. An example of such alternative analysis is the estimation of a type
of fractal dimension in [17] based on the well-known Riemann zeta function.
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The method proposed here is inspired in [2] and [17], even though we do
not use the zeta function but rather the most general idea of Dirichlet series.
Besides, we are not focusing on specific measures like the fractal dimension,
but on a technique to obtaining texture descriptors as precise and generalist as
possible.

3 Complex Networks Model for Texture Description

The complex networks employed here are described in details in [2] and here
we only summarize the main idea. In that model, the gray-scale image I is
represented by a network G(V,E), where G is a set of vertexes and E a set
of edges. Each pixel in I with Cartesian coordinates (x, y) is associated with a
vertex vxy ∈ V . The set of edges is composed by

E = {e = (vxy, vx′y′) :
√

(x − x′)2 + (y − y′)2 ≤ r}, (1)

where r is the neighborhood radius, a predefined parameter. Each edge e =
(vxy, vx′y′) is associated with a weight w(e), defined by

w(e) =
(x − x′)2 + (y − y′)2 + r2 |I(x,y)−I(x′,y′)|

L

2r2
, (2)

where L is the maximum gray level. This corresponds to a normalized Euclidean
distance in a three-dimensional space where the pixels are mapped to points
with coordinates (x, y, I(x, y)).

To analyze the evolution dynamics of the network model, the original model
G(V,E) gives rise to a family of subgraphs Gt(V,Et), which preserves the set
of vertexes but removes a subset of edges by thresholding the corresponding
weights, i.e.:

Et = {e ∈ E : w(e) ≤ t}. (3)

For each vertex g ∈ Gt we can compute its degree by

dt(g) = |{e ∈ Et : v ∈ e}|,∀g ∈ G, (4)

where | · | stands for set cardinality.

4 Proposed Method

We propose the use of Dirichlet series as a mechanism to highlight different
patterns in the degree distribution. The obtained descriptors are called Dirichlet
Complex Network (DCN) descriptors.

The family of Dirichlet series are characterized by the general expression

∞∑

n=1

ann−α, (5)
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where both the sequence of numbers an and the exponent α are complex-valued
(here they are real-valued in particular). As usual in any conventional series, n
are integer numbers, although in practice the same effect of a real-valued n is
achieved by setting the α parameter appropriately.

Here, we use the number of vertexes with a particular degree n as the term
an and take the partial sums of the series. Therefore given the degree vector dt

as defined in (4), we have the degree histogram

ht(k) =
∑

g∈G

δ(dt(g), k), (6)

where δ(x, y) is the Kronecker delta (1 if x = y, 0, otherwise) and the kth term
in the proposed Dirichlet series is obtained by

Dα
t (k) =

k∑

n=1

ht(n)nα, (7)

where α is a parameter free to be set empirically or using any specific heuristic.
The degree Dirichlet distribution is provided by

pα
t (k) = Dα

t (k)/
dmax∑

k=1

Dα
t (k). (8)

The statistical measures employed to compose the descriptors are similar to
those described in [2], i.e., the energy E, entropy K and contrast C:

Eα
t =

dmax∑

k=1

(pα
t (k))2 Kα

t = −
dmax∑

k=1

pα
t (k) log pα

t (k) Cα
t =

dmax∑

k=1

k2pα
t (k)

(9)
Here, we obtained interesting performance by combining α = −9 and

α = −10. We also employed r = 2 and t ranging between 0.05 and 0.53, with
increments 0.015, as recommended in [2]. The dimension of the feature vector is
reduced by the Karhunen-Loève (KL) transform [5], such that the final descrip-
tors effectively correspond to

D = KL

⎛

⎝
⋃

t∈[0.05,0.53], α∈{−9,−10}
{Eα

t ,Kα
t , Cα

t }
⎞

⎠ , (10)

where KL(x) is the KL transform of the vector x. Figure 1 summarizes the main
steps.

5 Experiments

Two benchmark data sets are employed for validation and comparisons in this
work, namely, UIUC as used in [9] and USPTex [3].
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Fig. 1. Proposed method. From left to right, the original texture, network represen-
tation, degree distribution, Dirichlet series (α = −9) and the respective descriptors
(energy, entropy and contrast).

UIUC is a database composed by 40 large gray-scale images representing
landscapes, animals, materials, etc. Each image is split into 25 non-overlapping
windows, each one with dimensions 256×256. This results in a database of 1000
texture images categorized into 25 groups.

The process to generate USPTex [3] is similar to that employed in UIUC.
Originally, 192 large photographies (512×384) are captured under non-controlled
conditions and from each one of these images we extract 12 smaller windows
(128 × 128) without overlapping. At the end this corresponds to a collection of
images with a total amount of 2292 samples divided into 191 classes. Finally, for
the comparison accomplished here where only gray-scale methods are considered,
these images are converted to gray levels.

The proposal here described is compared with other classical and state-of-
the-art texture descriptors in the literature, to know, Local Binary Patterns
(LBP) [13], LBP+VAR [13], Bouligand-Minkowski (BM) fractal descriptors [1],
Local Phase Quantization (LPQ) [14], Binarized Statistical Image Features
(BSIF) [8], and the original complex network (CN) descriptors in [2].

The classifier employed for the proposed descriptors is the linear discriminant
analysis [5]. Testing and training sets are determined by following a randomized
5-fold scheme, which is repeated 100 times to provide the average accuracy as
well as the corresponding error (standard deviation). As for the other compared
methods from the literature, we adopted the parameters suggested in the respec-
tive references.

6 Results

Table 1 lists the accuracy of the proposed method (DCN) in texture classifica-
tion compared with other state-of-the-art approaches. The proposed descriptors
achieved the highest accuracy in both databases. Descriptors based on complex
networks, i.e., that presented in [2] and the method proposed here, present rele-
vant advantage over the other approaches, especially in USPTex. This is exactly
the most challenging data set, presenting a significantly larger number of images
and categories.

Figure 2 exhibits the confusion matrices for the methods providing the two
highest accuracies in both data sets. We restricted USPTex matrices to the first
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Table 1. Percentage of images correctly classified in UIUC and USPTex databases and
respective errors.

Method UIUC USPTex

LBP 77.6 ± 0.8 67.9 ± 0.4

LBP+VAR 79.5 ± 0.7 69.9 ± 0.6

BM 78.6 ± 0.6 77.9 ± 0.4

LPQ 74.2 ± 0.9 76.3 ± 0.4

BSIF 78.0 ± 0.8 75.8 ± 0.4

CN 78.8 ± 0.4 86.0 ± 0.3

DCN (Proposed) 80.1 ± 0.6 87.7 ± 0.4

Fig. 2. Confusion matrices for the highest success rates on UIUC and USPTex
databases.

50 classes to facilitate the visualization. Even though both approaches present
difficulties in distinguishing complex groups as the classes 18/19 in UIUC, the
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presented proposal yielded a reduced number of gray points outside the diagonal,
especially in USPTex database.

Here the role of the exponentiated Dirichlet summation is to equip the his-
togram with a nonlinear viewpoint, which allows richer analysis of the repre-
sented texture. In particular, the negative exponents employed in our applica-
tion have the ability of giving larger significance to the smaller values of the
histogram. The final descriptors are in this way more balanced than the orig-
inal ones and information that was originally disregarded are now taken into
account in the classification process. The effectiveness of such consideration is
verified and confirmed by the outstanding result obtained in such challenge task
of classifying large databases of texture images.

7 Conclusions

This work proposed and investigated the use of Dirichlet series to improve the
performance of histogram-based descriptors of texture images, in particular,
those descriptors acquired from a complex network modeling.

The method was tested on the classification of benchmark databases and the
achieved accuracy outperformed other state-of-the-art descriptors. Such great
performance is explained by the nonlinearity introduced by the Dirichlet series.
The partial sum used here employs negative exponents, which, by giving higher
weight to the smaller histogram values, make the descriptors more balanced and
preserve information that is usually discarded by the classical complex network
descriptors.

The great accuracy confirmed by the tests also suggests the potential of
the proposed descriptors for practical applications in a number of real-world
problems where the classification of texture images plays fundamental role.
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