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Abstract. This work introduces a novel approach to dynamic texture
description. The proposed method is based on statistics from a vector
field feature extractor that decomposes and describes features of distinc-
tive local vector patterns as composites of singular patterns from a dic-
tionary. The extractor is applied to a time-varying vector field, namely a
dynamic texture’s optical flow frames. An interest point pooling method
statistically highlights the recurring texture patterns, generating a his-
togram signature that is descriptive of the temporal changes in the tex-
ture. The proposed descriptor is used as feature vector on classification
experiments in a widespread dataset. The classification results demon-
strate our method improves on the state of the art for dynamic textures
with non-trivial motion, while employing a smaller feature vector.
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1 Introduction

It is difficult to provide a formal definition of texture, but it can be described
as a complex spatial arrangement of visual patterns that have particular prop-
erties and recurring characteristics [7]. Dynamic textures extend the concept
of self-similarity and periodicity of textures to include repeating patterns in the
temporal dimension, such as in videos that present periodic motion [2]. Dynamic
texture recognition has been an area of recent interest in computer vision and
pattern recognition. The most important step towards dynamic texture recogni-
tion is to determine a meaningful and discriminating computational description
of the texture that is capable of capturing similarities between alike textures
while distinguishing different textures. Many methods have been proposed with
this goal in mind, which can be classified into four main categories: (i) motion
based methods (often involving optical flow), (ii) filters and transform based
methods, (iii) model based methods, and (iv) statistical methods [6]. Statisti-
cal methods are particularly effective because statistical analysis highlights the
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repeating local patterns that are distinctive of textures. They are among some
of the best performing texture descriptor methods today, such as LBP [18] and
deterministic walks [3,6], which offer static and dynamic texture implementa-
tions. These methods describe pixel neighborhoods with efficacy and robustness
to noise and changes.

Taking into account that the optical flow [14] is a suitable descriptor of
motion between video frames, it has also seen extensive use as a dynamic texture
descriptor [1,5]. Statistical approaches to optical flow description have achieved
good results in diverse pattern recognition tasks [12].

The work of Liu and Ribeiro [11] proposed a scale and rotation invariant
feature extractor for vector fields, similar to the popular SIFT feature detector
[13]. The feature extractor is based on identifying points of interest in a vector
field and decomposing their region into constituent elements that are matched
to a dictionary of singular vector field patterns. The method has been shown
to be effective in decomposing and reconstructing flows and matching points of
interest in fluid motion vector fields. Optical flows are vector fields, and as such,
local regions of an optical flow can be described by their component singular
patterns. Describing an entire optical flow via local patterns requires pooling the
information of the local patterns into a global signature. Methods for describing
a whole object by its local features are not new in computer vision; the statistical
grouping of visual features can be approached in a number of ways. Many of these
approaches employ histograms to compile image features, and many histogram
based methods fall into the bag-of-visual-words category (also called bag-of-
keypoints or bag-of-features), inspired by an analogous text analysis technique
[4].

This work proposes and validates a dynamic texture descriptor based on
describing the texture’s temporal aspect by employing as the feature vector a
histogram of interest points acquired using the singular vector field patterns fea-
ture detector. Sections 2 and 3 describe known literature approaches to singular
patterns detection and bag-of-features, respectively. Section 4 presents our novel
approach to using singular patterns occurrence statistics as a global dynamic
texture descriptor. The method has been validated on Dyntex, a widely used lit-
erature dynamic texture dataset. In Sect. 5, results are shown for the proposed
method being applied to perform a classification task. In Sect. 6, we evaluate
our proposed methods’ viability and effectiveness in comparison to other state-
of-the-art techniques.

2 Singular Vector Field Patterns Detector

Most natural vector fields present particular local characteristics and points of
interest. Vector field descriptors that can recognize and describe such regions
have been extensively employed in several applications [10,15]. An effective way
of modeling local features of a field vector is given by Liu and Ribeiro [11].
The method is based on decomposing the vector field into singular patterns,
which are components from a set of symbols, a dictionary of patterns whose
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linear weighted combination is an approximation of that region of the field. An
important choice is which patterns compose the dictionary, since there are no
clear definitions for most visible vector field patterns of interest, such as sinks
and sources [9]. Rao and Jain [16], in their seminal vector field analysis work,
proposed as a dictionary six distinct patterns in which the field nullifies itself
(which means the resulting vector is zero). The singular patterns detector uses
a wider set of patterns as dictionary. It includes the patterns in which the flow
field is nullified, but also defines a complex-valued function F (z). If we choose
a given point z0 as the origin, F (z) can be approximated by f(z), whose Taylor
expansion is a linear combination of complex basis functions, as shown in Eq. 1.

F (z) ≈ f(z) =
∑

k

akφk(z) (1)

In this equation, φk(z) are the basis flows and ak are the coefficients that
weight their effect on the local pattern around the origin, and complex basis
flows are chosen instead of real ones because the former model more smooth
and natural flows. The ak coefficients are computed by cross-correlation, by
projecting the vector field F (z) over the basis flows. Therefore, local maxima in
the sum of ak coefficients are chosen as singular pattern points. Each pattern
has an energy value which denotes its relevance. The method also builds into
each chosen interest point rotation and scale invariance.

3 Bag-of-Features Based Descriptors

There are several strategies for pooling sparse local features into a signature for
the whole [17]. The standard bag-of-features approach begins with the extraction
of a vocabulary from a training dataset. This consists in acquiring features from
diverse samples of data, clustering those features using a quantization algorithm
such as k-means, and defining a vocabulary of features around the centroids of
those clusters. Once that is done, new data can be described by extracting its
features and clustering these new points onto the previously obtained vocabu-
lary clusters. The number of occurrences of local features belonging to each of
these clusters is a discriminating statistical aspect of the whole object; these
occurrences can be captured in a histogram, which can be used as a feature vec-
tor for the complete entity. The bag-of-features histogram has great descriptive
potential, given its potentially small size relative to the original data [8].

4 Singular Patterns as a Global Optical Flow Descriptor

We propose to use a set of singular patterns into a descriptor for the temporal
changes in a dynamic texture, with two data pooling strategies that are cus-
tomized to the specific characteristics of the singular patterns feature detector.
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4.1 Best Coefficient Bag-of-features

We would usually employ a training sample to create a feature vocabulary, but,
conveniently, the singular patterns detector already suggests k distinctive φk

basis flows. In this case, we consider the centroids C1, C2, ..., Ck in the clustering
process to be given by the basis flows, such that C1 = (1, 0, 0, . . . , 0), C2 =
(0, 1, 0, . . . , 0) and so forth.

Consider a new, unknown optical flow Fnew, and its detected set of singular
patterns XFnew

. Also consider each feature x ∈ XFnew
is described by its cor-

responding ak coefficient vector ax = (a1, a2, . . . , ak). For each x, its values are
grouped into one of the M clusters, by the criterion of the centroid Cx closest
to x. Equation 2 shows the choice of cluster for a feature x.

Cx = arg min
m|1≤m≤M

|ax − Cm|, x ∈ XFnew
(2)

Once the features are assigned to clusters, a histogram HFnew
of the occur-

rences of features in each cluster can be built to describe the set of patterns
XFnew

. In the histogram, each bin corresponds to a Cx, and each feature
x ∈ XFnew

increments one bin, as shown in Eq. 3.

HFnew
(m) =

M∑

m=1

δ(Cx,m),∀x ∈ XFnew
(3)

Where δ(j, i) is Kronecker’s delta:

δ(j, i) =

{
1, j = i

0, j �= i
(4)

Notice that due to the temporal periodicity of the dynamic texture, the
method is expected to detect recurring patterns, which will be highlighted by
the histogram. This pooling method is shown in Fig. 1.

4.2 Coefficient Values Histogram

Another possible approach to pooling the acquired features is to consider each
coefficient in the feature’s vector individually. This way it is possible to measure
the presence of each singular pattern component in the optical flow. To represent
the occurrence of values ak, k histograms HF,k are constructed, where, for each
value k, the ak coefficients for all features x ∈ XFnew

are evaluated and organized
into bins, each representing a range of values for ak, according to Eq. 5.

HF,k(i) =
n∑

i=1

1A(ax(k)), ∀x ∈ F, (5)

where 1A(x) is the indicator function:

1A(x) =

{
0, x �∈ A

1, x ∈ A
(6)
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Fig. 1. Summary of the bag-of-features pooling method for vector field features.

The proposed method of pooling features components into coefficient value
histograms is summarized in Fig. 2. Notice how a histogram is generated for
every ak coefficient, yielding k histograms which each describe the presence of a
dictionary pattern on the composition of the optical flow.

In both methods, we append to each computed histogram its measures of
energy, entropy, skewness, contrast, average, variance and kurtosis, which have
been shown to significantly enhance the discriminating power of the histogram
[3].

5 Experiments and Results

5.1 Experimental Parameters

The singular patterns detector employed 18 φk basis flows and pattern energy
threshold in accordance with the chosen published parameters in the original
work [11]. In the coefficient values histogram method, we found that 12 bins
in each histogram yields good results with a reasonably sized final feature vec-
tor. One important detail is that the bins are not of equal size. We observed
the coefficient value distribution resembles a Gaussian with expected value zero
(coefficients can be negative) and low variance, therefore logarithmic bin sizes,
with the smallest bins closest to zero, provided a much more balanced distri-
bution of the data. Considering 18 histograms of size 12, and 7 statistics per
histogram, the feature vector has 342 values.

Experiments were carried out on a challenging subset of the Dyntex dataset,
with 10 different 25 frame samples (288 × 352 pixels) from 2 different videos
for each class. Our Dyntex subset involved 79 classes, for a total 790 samples,
and all classes in the dataset with non-trivial temporal variation were included.
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Fig. 2. Summary of the ak coefficient values histogram generation. Here, k histograms
are generated, one for each coefficient, and the feature vector is their concatenation.

Because the method has a relatively high computational cost, we also evaluated
classification results after down-sampling the vector fields in half. Classification
for all experiments were performed with the same parameters, using Linear Dis-
criminant Analysis (LDA) with leave-one-out cross-validation.

5.2 Results

Table 1 presents classification results for the experiments. Results are provided
with and without the inclusion of the histogram statistics metadata (referred to
as Stats on the table), and for the statistics by themselves.

We compared our best results to the performance of LBP-TOP[8,8,8] [18], one
of the state-of-the-art dynamic texture descriptors, on the same dataset, with the
same parameters and classifier, and it can be noted our descriptor outperforms
LBP-TOP while using a smaller feature vector. Results for the down-sampled
vector fields were also good, considering the method is about 4 times faster to
compute. The option of down-sampling gives the method flexibility depending
on the application’s requirements.
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Table 1. Correct classification rates for singular patterns optical flow on the Dyntex
dataset using both statistical pooling strategies. Spatial LBP and LBP-TOP results
are also presented for comparison. Best result in bold.

Method Dimension Correct classifications (%)

Coefficient histogram (down-sampled)

Stats 126 89.88

Histogram 216 84.63

Histogram + Stats 342 95.66

Coefficient histogram

Stats 126 91.83

Histogram 216 87.80

Histogram + Stats 342 97.44

Best coefficient bag-of-features

Stats 7 24.76

Histogram 18 44.27

Histogram + Stats 25 48.90

Coefficient hist. + bag-of-features

Stats 133 93.17

Histogram 234 86.83

Histogram + Stats 367 97.69

LBP results for comparison

Spatial LBP 256 87.32

LBP-TOP 768 95.98

6 Analysis and Conclusion

Our approach provides strong correct classification rates compared to LBP-TOP.
Focusing on motion description alone it offers high correct classification rates for
dynamic textures. When combined with a spatial descriptor like spatial LBP, the
results are better than LBP-TOP, while maintaining a manageable descriptor size.

The best coefficient bag-of-features pooling approach did not fare well on
its own. This is likely because most non-synthetic vector field patterns are a
weighted combination of many basis flows; reducing each pattern to a single
component risks discarding important information.

Realistically, vector fields are complex results of many forces. What sepa-
rates one pattern from another are the ak component coefficients. Therefore, the
second approach based on values of histograms performed substantially better.

Optical flow is a strong descriptor for motion, but it is also high dimension-
ality data. Singular patterns address this problem, as powerful tools to summa-
rize descriptive aspects of the flow in much less data. Our approach based on
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extracted flow field features with appropriate statistical grouping yields a pow-
erful dynamic texture descriptor of manageable dimension for most applications.
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