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Abstract. This work presents an approach for texture based image
characterization through topological projections onto the Klein Bottle
of small high-contrast regions (patches) extracted from the images. Sev-
eral configurations of cut-off frequency were analyzed in order to reduce
the vector size of features and to increase accuracy. Experiments using
the proposed method for texture classification, on several established
datasets, show that the proposed method not only manages to reduce
feature vector size, but also improves correct classification rates when
compared to other state-of-the-art methods.
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1 Introduction

The literature approaches the problem of texture characterization through sev-
eral methods. To classify an image, visual attributes presented in the image need
to characterize the image singularly or highlight characteristics that are found
in a class of images, making them distinguishable from other classes.

According to [4], natural image statistics is an extremely important field in
several areas such as computer vision, statistics, neuroscience and physiology.
The authors proposed the study of the local behavior of images by analyzing a
space of small high-contrast regions (patches) extracted from the images.

The authors [9] present a novel framework for estimating and representing
the distribution around low dimensional submanifolds of pixel space using the
Klein Bottle space.
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This work proposes a new approach to determine the feature vector of texture
characterization via projections of patches on the topology of the Klein Bottle.
A new configuration of cut-off frequency was proposed based on the definitions
of [9] for projections in the Klein Bottle.

Experiments in classification show that the method is robust for texture clas-
sification and provides very high accuracy for several texture databases, outper-
forming other state-of-the-art descriptors, while reducing a number of dimensions
on the feature vector. In Sect. (2, 2.1, 2.2), the results of Lee et al. ([8]), Carlson
et al. ([4]) on the Klein Model K are reviewed. In Sect. (2.3), the achievement of
an estimation for the probability density function of the projected space in [9]
is reviewed and new configurations for generating the descriptors are presented.
In Sect. (3), the results of this work are stated. Finally, in Sect. (4) the results
are discussed.

2 Overview of the Multi-scale Invariant Descriptor
Process

The simplified steps created to generate a multi-scale invariant descriptor are
illustrated in Fig. 1. Initially the image is selected (A) and the patches are
extracted (B). These patches are projected onto the space of the Klein Bot-
tle (C). The calculation of the Estimated K-Fourier Coefficients are based on
the projected patches. After choosing the cut-off frequency to construct the
estimated probability function, the vector descriptor EKFC is created (D). This
process is executed over all images of the Texture Bases. Following on, this set of
descriptor vectors is submitted for classification in order to analyze the accuracy
of the method (E).

Fig. 1. Flow of processing steps.
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2.1 Patches

Initially, patches (E) are extracted from the image (Fig. 1B) based on [8], in
which patches with n × n pixel dimensions are extracted. Then, 5.000 patches
are randomly selected.

For each one of these selected patches E = [eij ], the log is applied gen-
erating A = [aij ] with aij = ln (eij) and the D-norm are calculated as
‖A‖2D =

∑
ij∼kl(aij − akl)2, with aij ∼ akl if, and only if |i − k| + |j − l| ≤ 1.

Only those patches with D-norm greater than or equal to a given threshold
are considered (the authors [9] considered 0.01). As such, the 1.000 highest D-
norm patches or the remaining patches are selected.

For each one of these patches, the average is subtracted and then normalized:
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where if B is the n × n matrix with all elements equals 1.

2.2 Projection

To create the projection (Fig. 1C), the authors herein used the Klein Bottle
space K obtained from the rectangle R =

[
π
4 , 5π

4

]
x

[−π
2 , 3π

2

]
, where each point(

α, −π
2

)
is identified with

(
α, 3π

2

)
and each

(
π
4 , θ

)
is identified with

(
5π
4 , π − θ

)

for all (α, θ) ∈ R. So, the space K with the Topology of the Klein Bottle was
created. Figure 1(C) exemplifies the patches projected onto the space K .

Each patch can be parameterized by the direction α ∈ [
π
4 , 5π

4

)
and by the

transition of the bar/edge structure defined by the angle θ. Different pairs of
(α, θ) can describe the same sample, e.g.,

(
π
4 , 0

)
and

(
5π
4 , π

)
describe the edge

steps with direction of the gradient toward the northwest.
To obtain (α, θ) ∈ K , which determines a single patch, one adds a+ ib = eiα

and c + id = eiθ.
These numbers are obtained from the fact that the intensity function is

approximated by a polynomial p

p(x, y) = c
(ax + by)

2
+ d

√
3(ax + by)2

4
, c2 + d2 = 1. (2)

We then can think the patch E = eij as coming from this polynomial via the
local averaging

eij =

1− 2i−2
n∫

1− 2i
n

−1+ 2j
n∫

−1+ 2j−2
n

p(x, y) dxdy, i, j = 1, ..., n. (3)
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and P = [pij ] is the centered log normalization of E = eij .
The ∇IP (gradient intensity function) is sectionally constant and equal to

the discrete gradient of P, and through such, ∇IP ∼= ∇P. The centralized dis-
cretization was used.

If 2 ≤ i, j ≤ n − 1 then

∇P(i, j) =
1
2

[
pi+1,j − pi−1,j

pi,j+1 − pi,j−1

]

(4)

HP(i, j) =
[
pi+1,j − 2pi,j + pi−1,j HxyP(i, j)

HxyP(i, j) pi,j+1 − 2pij + pi,j−1

]

(5)

where

HxyP(i, j) =
pi+1,j+1 − pi−1,j+1 − pi+1,j−1 + pi−1,j−1

4
. (6)

If i ∈ {1, n} or t ∈ {1, n}, then there is a single (i, j) ∈ {2, ..., n − 1}2 that
minimizes |r − i| + |t − j|, with

∇P(r, t) = ∇P(i, j) + HP(i, j)
[
r − i
t − j

]

(7)

Using the first order Taylor expansion, the approximation of P at a location
(r, t) near (i, j) is calculated. For the gradient expansion IP, let ∇IP(x, y) =
∇P(i, j) if

∣
∣
∣
∣x −

(

−1 +
2j − 1

n

)∣
∣
∣
∣ +

∣
∣
∣
∣y −

(

1 − 2i − 1
n

)∣
∣
∣
∣ <

1
n

(8)

for some (i, j) ∈ {1, ..., n}2, and 0 otherwise.
If the eigenvalues of CP(i, j) =

∫∫
[−1,1]2

∂IP
∂xi

∂IP
∂xj

dxdy i, j = 1, 2, ..., n.

(obtained explicit from ∇P through the quadratic form in Eq. (4) and discretized
as in Remark 3.2 of [9]) are real and different, then αP ∈ [

π
4 , 5π

4

)
is defined as

the direction of the eigenspace corresponding to the highest eigenvalue, or patch
is discarded otherwise. a and b are so that a + ib = cos αP + i sin αP = eiαP .

Let 〈f, g〉 =
∫∫

[−1,1]2
〈∇f(x, y),∇g(x, y)〉 dxdy denote the inner product

inducing the D-norm ‖.‖D. If u = (ax+by)
2 , then the vector

[
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]

∈ S1 that
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∥
∥IP − (cu + d

√
3u2)

∥
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D
, with c2 + d2 = 1 is given by
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whenever
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〈
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〉2
D

�= 0 (10)
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and it determines a unique θP ∈ [−π
2 , 3π

2

)
so that c∗ + id∗ = cos(θP)+ i sin θP =

eiθP .
If

Φ(c∗, d∗) =
∥
∥
∥IP − (c∗u + d∗√3u2)

∥
∥
∥

D
=

√

2
(
1 −

√
ϕ(IP, αP)

)
, (11)

then Φ(c∗, d∗) can be seen as the distance from P to K and Φ(c∗, d∗) ≤ √
2. So

ϕ(IP, αP) exists in the sample S ⊂ K if Φ(c∗, d∗) ≤ rn, where rn are the set, so
that

√
ϕ ≥ 1

2n−1 .
After finding a,b, c and d for a patch P, one can obtain a + ib = eiαP and

c + id = eiθP .
Using (αP, θP) for each selected patch, the projection on K is made.

2.3 EKFC Descriptor

With these patches projected, the calculation for the Estimated K-Fourier Coef-
ficients can be made, with the estimated f̂ corresponding to the probability
density function f : K → R; f̂(α, θ) =

∑
k∈Nω

f̂kφk(α, θ) where
{
φk

}
k∈N

is a
trigonometric base for L2(K,R).

Let Πn,m = (1−(−1)n+m)π

4 and N be the number of projected patches; then
the trigonometric base {φ} for L2(K,R) is:

1,
√

2 cos (mθ − Π0,m),
√

2 cos (2nα),
√

2 sin (2nα), (12)
2 cos (nα) cos (mθ − Πn,m), 2 sin (nα) cos (mθ − Πn,m);

and the Estimated K-Fourier Coefficients are:

âm =
1

N

N
∑
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√
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N

N
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√
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N

N
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N

N
∑
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2 cos (nαk) cos (mθk − Πn,m), ên,m =
1

N

N
∑

k=1

2 sin (nαk) cos (mθk − Πn,m);

where the summation is over all N (αP, θP) selected patches.
If we order them with respect to their (total) frequencies and alphabetic

placement as

â1, â2, b̂1, ĉ1, d̂1,1, ê1,1
︸ ︷︷ ︸

frequency=2

, â3, d̂1,2, d̂2,1, ê1,2, ê2,1
︸ ︷︷ ︸

frequency=3

, â4, b̂2, ...

then we get the ordered sequence K̂F (f) and the parameterization K̂Fω(f, S)
consists of the K-Fourier estimated coefficients of the estimated probability den-
sity function f̂(α, θ) with a frequency less than or equal ω.

The presented paper proposed the investigation of different configuration,
given by [9], of patch size (n) and cut-off frequencies (ω) in the estimated prob-
ability density function.
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In this paper EKFCn =
(
K̂Fω(f, S)

)
will be the Estimated K-Fourier

Coefficients with frequency less than or equal to ω obtained from n × n pro-
jected patches and EKFC =

[
EKFCn1 , EKFCn2 , ..., EKFCnj

]
will be the

concatenated Estimated K-Fourier Coefficients of j values of n that generate the
descriptors (Fig. 1D).

For more details of the equations in Sects. 2.1, 2.2 and 2.3 see [11].

3 Results and Discussion

Analyzing the equations of the previous section, the size of the patches and the
cut-off frequency have a great influence on the quality and quantity of feature
vectors.

The patch sizes configuration was analyzed in [11] getting great results and
reducing the setting for n = 4, 5, 6 using the fixed cutoff frequency.

The cutoff frequency used by [9] kept the same value (ω = 6) proposed by
[14] to calculate the estimating function f̂ , influencing the calculation of the
Estimated K-Fourier Coefficients.

Motivated also by the lack of criteria in choosing the cutoff frequency pro-
posed by [9], we performed experiments with 5 datasets: KTH-TIPS [6], CUReT
[5], Brodatz [2], Vistex [12] and ALOT [3].

Across all experiments we used the Large Margin Nearest Neighbor (LMNN)
[13], in the metric learning with the 3 nearest neighbors to acquire a global
metric, as well as 20% of the training set for cross validation. For classification
we used the mean and variance of the percentage of test images, which were
labeled correctly, and computed in 100 random split training/test sets. We used
half the images per class for the training set, in all experiments.

For the first experiment, we used configurations of patch sizes (n =
3, 7, 11, 15, 19) as in [9]. We vary the cutoff frequency (ω = 2, ..., 12). Table 1
presents the results obtained in the first experiment.

Table 1. Comparison of classification results of different frequencies for KTH-TIPS.

Frequency 2 3 4 5 6 7 8 9 10 11 12

Descriptors 30 55 100 145 210 275 360 445 550 655 780

Greater

Accuracy

67.32 77.07 85.12 88.54 90.98 93.17 96.10 96.83 71.95 97.80 99.27

Average

Accuracy

61.85 73.53 81.35 84.07 87.37 89.91 92.25 93.39 66.86 95.66 96.57

Variance 4.0E−4 3.8E−4 3.5E−4 3.6E−4 2.1E−4 3.2E−4 2.0E−4 2.7E−4 4.9E−4 1.5E−4 1.5E−4

The results (Table 1) showed that when we increases the cutoff frequency,
consequently the size of descriptor increases too and the accuracy increased
too in most cases. The best results for the KTH-TIPS dataset using the cutoff
frequency 12 obtained 99.27% of accuracy.
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For the second experiment, we used two sets configurations of patch sizes
(n = 3, 7, 11, 15, 19 and n = 3, 4, 5) and vary the cutoff frequency (ω = 2, ..., 12).
The second setting was set after testing with various patch configurations [11].
In this experiment, we analyzed the results of the best accuracy in all tested
datasets. However, we impose a limit of 210 on the size of descriptor based on
[9]. We consider this limit because we want to have better accuracy with fewer
descriptors. Table 2 presents the best results obtained in the second experiment.

Table 2. Results yielded for two different sets of patches.

[3 7 11 15 19] [3 4 5]

Datasets Brodatz CUReT KTH-TIPS Vistex ALOT Brodatz CUReT KTH-TIPS Vistex ALOT

Frequency 6 6 6 6 6 5 5 5 5 5

Descriptors 210 210 210 210 210 87 87 87 87 87

Gtr. Acc. 91.67 80.43 90.98 91.44 81.63 94.14 86.78 93.66 95.14 82.29

Avg. Acc. 88.98 78.70 87.37 88.27 80.75 92.48 85.56 90.16 91.65 81.16

Variance 8.5E−5 5.2E−5 2.1E−4 2.0E−4 1.7E−5 4.4E−5 2.7E−5 3.1E−4 1.8E−4 1.6E−5

The results (Table 2) shows the best accuracy of two different sets of patches
for five datasets with the limited descriptor size. Comparing two sets for all
datasets, an increase in accuracy with reduced frequency cutoff was observed.

Table 3. Comparison of the our approach with the methods in the literature.

Method Number of
descriptors

Success rate (%)

KTH-TIPS CUReT Brodatz Vistex ALOT

Wavelets 36 58.52 50.99 70.27 72.11 3.67

LBP 25 74.07 67.37 89.58 88.89 68.3

Gabor 64 80.12 82.60 82.49 91.67 61.59

[1] 108 90.37 84.32 95.27 86.76 68.85

[7] 3888 - - 98.55 ± 0.53 - 97.49 ± 0.86

[9] 215 94.77 ± 1.3 95.66 ± 0.45 - - -

[10] 140 98.4 - - - 93.35

[15] 20 - - 85.02 71.23 58.83

[16] 100 94.90 ± 1.6 - 94.90 ± 0.7 - -

[17] 648 98.86 ± 1.12 94.44 ± 1.13 - - -

Our approach 87 93.66 86.78 94.14 95.14 82.29

We also performed a comparison with traditional and state of art texture
analysis methods. Table 3 presents the results yielded for each method. These
methods use classifiers other than LMNN, such as LDA or Neural Networks.
Emphasis is given here to the fact that we were not able to implement all the
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approaches under comparison due to the complexity of the method or missing
information in their respective papers. Thus, for methods that lack results for one
or more datasets, these results correspond to those presented in their respective
paper. We also compared our approach with the fixed configuration of patch
sizes. For this comparison we used our results previously presented in Table 2.

The results on Table 3 indicate that our approach presents a reduced amount
of descriptors and consistently high performance in across all texture datasets
tested. It yielded the highest success rate in the Vistex dataset using a reduced
number of descriptors.

4 Conclusions

The approach proposed in this work yields feature vectors smaller than other
state of the art methods, while keeping on par with those results found in such
methods, in terms of classification rates over several image databases, as shown
by the experiments performed. The cutoff frequency and the size of the patches
has a great influence on the computational cost and in our approach we managed
to reduce the quantity and the size of the patches.

As future work, we intend to investigate the use of polynomial order greater
than two or other different kinds of function, which may aid in reducing further
reduce the size of the descriptor.
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