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Abstract. Superpixel segmentation methods aim at representing image
objects by the union of connected regions (superpixels). Such aim can
be better approximated with a higher number of superpixels per object,
which often leads to an unnecessary over-segmentation due to the absence
of prior object information. In this work, we extend the Iterative Span-
ning Forest (ISF) framework to include object information and present a
superpixel segmentation method based on object saliency detection. As
ISF, the new framework, named Object-based ISF (OISF), relies on mul-
tiple executions of the Image Foresting Transform (IFT) algorithm for
improved seed sets, such that each seed defines one connected superpixel
as a spanning tree rooted at that seed. We describe an IFT-based method
for object saliency detection and show that the corresponding saliency
maps can improve seed estimation and connectivity function, increas-
ing the superpixel resolution inside a given object. Experimental results
on two medical image datasets demonstrate that the proposed OISF-
based method outperforms the state-of-the-art in boundary adherence
with higher number of superpixels inside the object.

Keywords: Superpixels - Object saliency map -
Image Foresting Transform

1 Introduction

Image segmentation into connected regions (superpixels) has been actively inves-
tigated in order to represent image objects by the union of their superpix-
els [1,6,9,11,12]—a criterion that often leads to unnecessary over-segmentation
of the image. For instance, content/structure-sensitive approaches may reduce
the superpixel size (increase over-segmentation) in heterogeneous regions of the
image, but the absence of object information makes them sensitive to the het-
erogeneity of the background [6,12]. Moreover, these methods cannot usually
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guarantee a desired number of superpixels. In many applications, however, there
is an object of interest and, for a fixed number of superpixels, it should be
expected higher superpixel resolution inside that object than elsewhere, except
for possible parts of the background with similar image properties. At the same
time, for a reduced number of superpixels, the boundaries of the object should
be preserved as much as possible (Fig.1).

In this work, we extend a superpixel segmentation framework, named Iter-
ative Spanning Forest (ISF) [11], to incorporate object information from an
object saliency map. ISF-based methods use multiple executions of the Image
Foresting Transform (IFT) algorithm [4] for improved seed sets, such that each
seed defines one spanning tree as a connected superpixel. An ISF-based method
involves the choice of four components: (i) a seed sampling strategy to obtain the
first segmentation; (ii) an adjacency relation that defines the image graph in 2D
or 3D (for superpixel- or supervoxel-based representation); (iii) a connectivity
function that estimates how strongly connected are the pixels to the seed set;
and (iv) a seed recomputation procedure for the subsequent execution of the
IFT algorithm.

We first use the IFT framework to design a method for object saliency detec-
tion. For a given image and a set of training pixels (interior and exterior scribbles)
on a given object, we train a pixel classifier to estimate an object saliency map
from any new image containing that object. We then propose a method that
exploits the saliency map to make seed sampling and connectivity function more
specific for that object. The new framework is termed Object-based ISF (OISF)
and the proposed OISF-based method is shown to increase boundary adherence
with more superpixels inside the object than their ISF-based counterparts and
state-of-the-art methods.

The next sections present the IFT framework and related definitions (Sect. 2),
its applications to object saliency detection and superpixel segmentation (Sects. 3
and 4), the proposed OISF framework and its evaluation (Sects.5 and 6), con-
clusion and future work (Sect. 7).

2 Image Foresting Transform

An image is a pair (Z,I) such that I(¢) assigns a set of local image features
(e.g., color) to every element ¢ € Z. We will address only 2D images, then those
elements are pixels. For a given adjacency relation A C Zx7Z and set N' C Z, one
can interpret (A, A, I) as an image graph G weighted on the nodes. Let ITg be
the set of paths in the graph, a path m; € IIg be a sequence (tq,ta,...,t, = t)
of nodes with terminus ¢, such that (¢;,t;41) € A, i = 1,2,...,n — 1 (being
trivial when m; = (t)), and f be a connectivity function that assigns a value
(e.g., a cost) to any path in IIg. A path 7, is optimum when f(m) < f(7%)
for any other path 7, € Ilg irrespective to its starting node. For the sufficient
conditions in [2], Dijkstra’s algorithm can solve the minimization problem C(t) =
miny,,eme{f(7)} by computing an optimum-path forest in the graph—i.e., a
predecessor map P that assigns to every node t € N its predecessor P(t) € N
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Fig. 1. (a) Original image in which the contour indicates an object of interest. For only
three superpixels, (b) the result of a content-sensitive approach based on entropy [11]
and (c) the result of the proposed method based on object information.

in the optimum path 7} or a marker P(t) = nil € N when ¢ is a root of the
map. Even when those conditions are not satisfied, the algorithm can output
a spanning forest with properties that are useful for several applications. This
framework to the design of image operators based on optimum-path forest is
called Image Foresting Transform (IFT) [4].

In this work we are interested in two of its applications: object saliency
detection based on pixel classification [8]; and superpixel segmentation [11]. The
next sections illustrate IFT-based image operators with examples of adjacency
relation and connectivity function for those applications.

3 IFT-based Object Saliency Detection

A map O that assigns values O(t), t € Z, proportional to the similarity between
t and a given object is said object saliency map. We create object saliency maps
by training a pixel classifier [8] from user-drawn scribbles inside and outside
a given object in one training image. Of course, one can build a pixel train-
ing set from scribbles drawn on several training images as well, whenever this
is required by the application. The scribbles represent a set of training pixels
whose color/texture properties may be mapped onto overlapping regions in the
corresponding feature space. By clustering, we first select a small set (e.g., 500
pixels) of the most representative object and background pixels to train the
classifier with minimum overlapping between regions of distinct classes in the
feature space. Therefore, let N be such selected set of training pixels and A be
a complete adjacency relation that connects any pair of pixels (s,t) € N x N.
A seed set S C N is defined with the closest pixels from distinct classes (object
or background) in G according to the Euclidean norm ||I(t), I(s)|| between their
colors in the CIELab color space. The set S is usually obtained by computing a
Minimum Spanning Tree (MST) in G and selecting nodes from distinct classes
that share an arc in the MST [8]. Let f, and f; be path-cost functions such as
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0 ifteS,cCS,
f=((t) = { +o00 otherwise,

fa(ms - (s,1)) = max{fu(ms), [1(2), I(s)]]},

where S, contains either object (z = o) or background (x = b) seeds, and
7s - (s,t) indicates the extension of ms by an arc (s,t) with the two joining
instances of s merged into one. The IFT algorithm is executed for each path-cost
function in order to obtain two minimum path-cost maps, which are combined
into the final object saliency map O, such that O(t) = ﬁ(tg{b(t)’ where C,.(t) =
minyn, e { fz(m) }. For each node in ¢ € N, C,(¢) and Cy(t) store the costs of
the paths rooted at the most closely connected seeds in S, and S;. Those seeds
offer to ¢ paths whose maximum arc weight ||I(t), I(s)|| is minimum. For pixels
t very similar to the object, it is expected that Cy(t) > C,(t) = O(t) = 1.

(1)

4 Superpixel Segmentation by Iterative Spanning Forest

The Iterative Spanning Forest (ISF) framework consists of four components: (i)
a seed sampling strategy; (ii) an adjacency relation; (iii) a connectivity function;
and (iv) a seed recomputation procedure [11]. For a given choice of these com-
ponents, one can design distinct superpixel segmentation methods. ISF executes
the IFT algorithm multiple times for improved seed sets in order to obtain the
final superpixel segmentation.

In 2D, the adjacency relation A C Z x T connects pairs of 4-neighboring
pixels. The graph is defined as G = (Z,.A, I). The connectivity function may be

0 if tes,
() = { 400 otherwise,

films - (s,8)) = fu(mwe) + [l T(re), IO + 18, 5],

(2)

where S is a set of seed pixels, 7, is the starting pixel (root) of s, « >0, 5 > 1,
and ||t,s|| = 1 since it represents the Euclidean norm between 4-neighboring
pixels. The role of « is to provide user control over the superpixel compactness
and regularity—lower is a;, more compact and regular they are. The 8 parameter
controls the boundary adherence—higher is 3, higher is the adherence of super-
pixels to the boundaries of the objects, but this reduces their shape regularity
and compactness. For an initial set S C Z, the IFT algorithm aims at finding
minimum-cost paths from S to the remaining pixels in Z\S. The connectiv-
ity function may not satisfy the conditions in [2], but each seed in S defines one
spanning tree (connected superpixel) suitable for image representation. The seed
recomputation procedure aims at improving the seed set S for the subsequent
execution of the IFT algorithm using the same connectivity function. Among
the components presented in [11], the authors concluded that the ones that use
f1, as defined in Eq. 2, and recomputes one seed inside each superpixel as the
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closest pixel to its geometric center, were the most competitive. ISF uses a con-
vergence criterion to select new seeds and so the spanning forest can efficiently
be updated in a differential way [3].

Taking into account the seed sampling strategies in [11], GRID and MIX
are the most competitive to estimate the initial set S. GRID selects a given
number of equally spaced pixels from Z and then approximate them to the
closest minimum in a gradient image. MIX seed sampling creates a two-level
quad-tree, using the normalized Shannon entropy, as predicate, and performs
GRID on the leaves of the tree. While GRID prioritizes a regular sampling over
the image domain, MIX aims at increasing the number of seeds in heterogeneous
regions, such as a content-sensitive approach, and at the same time preserving
the regularity of the grid sampling.

5 Object-Based ISF for Superpixel Segmentation

In applications with a given object of interest (e.g., an organ in medical images),
one can train a pixel classifier (e.g., the approach described in Sect. 3) to estimate
the object saliency map O from any given image. We then propose the use of
that map in ISF to increase the number of initial seeds in the image regions most
similar to the object (brighter regions in the map). For a fixed number of super-
pixels, this should lead to higher superpixel resolution inside the object than
elsewhere in comparison with other ISF-based methods. We call this approach
object-based seed sampling. We also propose the use of an object-based connectiv-
ity function similar to the one proposed in [10] in order to increase the boundary
adherence of the superpixels to the high-contrast regions of the saliency map.
The new framework is then named Object-based ISF (OISF).

5.1 Object-Based Seed Sampling Strategy

A binary mask M with most object pixels is defined as M (¢t) = 1, if O(t) > T
(e.g., T =0.5), or M(t) = 0 otherwise. The binary mask may consist of multiple
components and the number of seeds in each component is proportional to its
area. Our approach selects a percentage of seeds within those components and
the remaining seeds in regions where M(t) = 0 to compose the initial set S.
This process uses geodesic grid sampling—i.e., equally spaced seeds inside each
component.

5.2 Object-Based Connectivity Function

The authors in [10] proposed a new function fs, derived from f;, which takes into
account the relevance of a presegmentation map (for segmentation resuming).
Thus, for our proposal, fo can be rewritten as f2((t)) = f1({(t)) and

Falma {3, 80) = fo(ma) + sl + )
o1 (1) O"=001 1 510(r,) - 0|
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where v > 0 controls the balance between boundary adherence to high-contrast
regions of the image and saliency map. Figure?2 illustrates the impact of v in
the proposed OISF-based method, named OISF-GRID due to the geodesic grid
sampling—i.e., higher is v higher is the adherence to the object boundaries in
the saliency map.

Fig. 2. (a) Original image with the contour indicating the object of interest. (b) The
object saliency map using the classifier pre-trained on another image. Result for three
superpixels only using OISF-GRID with (¢) v =1 and (d) v = 10.

6 Experimental Results

The experiments used two datasets: Parasites, with 77 images of Schistosoma
Mansoni eggs, and Liver, with 40 CT-image slices of the liver, being the eggs
and the liver their respective objects of interest. We fixed a = 0.5 and g = 12,
as suggested in [11], to prioritize boundary adherence over compactness. For 7,
the best values for Liver and Parasites were v = 1.75 and v = 1.5, respectively,
as obtained by grid search on ~30% of the images. The classifier used to create
object saliency maps was trained from 500 pixels of a single image (Sect. 3).
Methods for superpixel segmentation are usually assessed by two bound-
ary adherence measures: (i) boundary recall (BR) [1] (higher is better); and (ii)
under-segmentation error (UE) [7] (lower is better). Since the size of the object’s
boundary is usually very small as compared to its size, these measures cannot
capture the ability of a method to retain more superpixels inside the object
than elsewhere. Except for a low number of superpixels, they can show when
a method best preserves the object’s boundary due to that property. There-
fore, boundary adherence with higher superpixel resolution in a given object
than elsewhere is measured by wBR = BR - P and wUFE = U—PE, where P
is the percentage of superpixels inside that object. We compare OISF-GRID
with four ISF-based methods [11] (ISF-GRID-MEAN, ISF-GRID-ROOT, ISF-
MIX-MEAN, ISF-MIX-ROOT) and two state-of-the-art approaches, the popular
SLIC [1] and a more recent one, LSC [5], according to those weighted boundary
adherence measures (see Fig.3). The performance of OISF-GRID is by far the
best, mainly because the penalization for irrelevant background superpixels.
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Fig. 3. OISF-GRID versus different superpixel-generation methods for varying number
of superpixels.

Although the computation of the object saliency map is detached from the
OISF-GRID algorithm, our proposal requires slightly higher processing time
than ISF due to the geodesic grid sampling on each component of the map.
However, the processing time of OISF is equivalent to the one of ISF in the
remaining steps.

7 Conclusion

We presented the Object-based Iterative Spanning Forest framework (OISF)
and an OISF-based method that considerably improves boundary adherence
with higher number of superpixels inside a given object than elsewhere (thus, it
reduces the quantity of irrelevant superpixels in the background). OISF incorpo-
rates object information from an object saliency map. We have shown an effec-
tive solution for saliency detection, but OISF can be used with other saliency
detection methods. We intend now to investigate new OISF-based methods, eval-
uate them on 3D medical image datasets, and explore OISF in applications that
require object delineation (i.e., semantic image segmentation).
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