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Abstract. Finding real-world applications whose records contain miss-
ing values is not uncommon. As many data analysis algorithms are not
designed to work with missing data, a frequent approach is to remove
all variables associated with such records from the analysis. A much bet-
ter alternative is to employ data imputation techniques to estimate the
missing values using statistical relationships among the variables.

The Expectation Maximization (EM) algorithm is a classic method to
deal with missing data, but is not designed to work in typical Machine
Learning settings that have training set and testing set.

In this work we present an extension of the EM algorithm that can
deal with this problem. We test the algorithm with ADNI (Alzheimer’s
Disease Neuroimaging Initiative) data set, where about 80% of the sam-
ple has missing values.

Our extension of EM achieved higher accuracy and robustness in
the classification performance. It was evaluated using three different
classifiers and showed a significant improvement with regard to similar
approaches proposed in the literature.

Keywords: Missing data · Imputation · Classification · ADNI · EM ·
Out of Sample

1 Introduction

Nowadays, data are generated from several distinct sources: sensor networks,
opinion polls about political and socio-economical topic, medical diagnosis, social
networks, recommendation systems, etc. Many of these real-world applications
suffer from a common drawback, missing or unknown data (incomplete feature
vector). This problem makes it very difficult to mine them using Machine Learn-
ing (ML) methods that can work only with complete data. The missing data
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problem can be handled in two ways. Firstly, all samples having a missing record
are removed before any analysis takes place. This is a reasonable approach when
the percentage of removed samples is low so that a possible bias in the study can
be discarded. Secondly, the missing values can be estimated from the incomplete
measured data. This approach is known as imputation [6] and is recommended
when the adopted data analysis techniques are not designed to work with missing
entries as is the case of almost all ML techniques.

The Alzheimer’s Disease Neuroimaging Initiative1 (ADNI) is a well-known
example of a missing data problem [5,11]. Most of the research related to the
ADNI database is made with the purpose of contributing to the development
of biomarkers for the early detection (diagnostic) and tracking (prognostic) of
Alzheimer Disease (AD). The features belonging to this dataset are derived from
longitudinal clinical, medical images (PET, MRI, fMRI), genetic, and biochemi-
cal data from patients with Alzheimer disease (AD), mild cognitive impairment
(MCI), and healthy controls (HC).

Pattern analysis in ADNI is strongly hampered by missing data, i.e. patients
with incomplete records, cases where the different data modalities are partially or
fully absent due to several reasons: high measurement cost, equipment failure,
unsatisfactory data quality, patients missing appointments or dropping out of
the study, and unwillingness to undergo invasive procedures. About 80% of the
ADNI patients have missing records. Thus, resorting to missing data imputation
becomes mandatory in order to find useful patterns of clinical significance.

Among the most prominent approaches used for data imputation, it can be
found the well-known and widely used Expectation-Maximization (EM) algo-
rithm. On its classic form, the EM algorithm is an iterative and general method
to estimate the parameters θ of a probability distribution by means of likelihood
maximization. The method, proposed by Dempster [1], can be summarized in
the E-Step and the M-Step. The E-Step computes a function for the expecta-
tion of the log-likelihood function using the current estimate of the parameters.
Then, the M-Step computes the new values of the parameters maximizing the
expected.

Many subsequent improvements based on the original EM algorithm idea can
be found in the literature. Consider the work of Schneider [8] in which a new
step of imputation is added based on a regression framework.

Existing approaches for imputation of missing data rely on the necessity of
the whole incomplete data matrix and do not allow to evaluate new samples
once the model is trained. This characteristic makes some existing methods for
imputation, including Schneider method, not suitable for most Machine Learning
algorithms. In this context, some authors [3,10] call to the methods can be
evaluate new samples: Out-of-Sample version.

This work presents an out-of-sample extension for applying the EM algorithm
in missing data problems. The idea behind the proposed method is to introduce
a new version of the EM algorithm to impute missing data in ADNI and then
using the imputed data to improve the classification of subjects.

1 http://adni.loni.usc.edu/.

http://adni.loni.usc.edu/
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The Paper is Organized as Follow: In Sect. 2 we provide further background
on the reguralized EM (regEM, Schneider proposal) and EM Out-of-Sample
(regEM-oos) version (proposal of this work). Section 3 details the experimental
settings on which we tested the different classification problems with regEM and
regEM-oos, discussing our findings. Final remarks and future work are examined
in Sect. 4.

2 Proposal

This section introduces the proposed approach for feature imputation. Let us
begin by introducing the notation used through this work. A data matrix Xn×d

can be represented by X = [x1,x2, . . . ,xj , . . . ,xd], where d is the total number
of variables (or features) and n is the total number of examples (or subjects).
When X has missing data, X is represented by concatenating two submatrices,
i.e. X = [Xo,Xm], where Xo is the matrix of fully observed features and Xm is
the matrix that encompasses features with missing values.

Our proposal leverages the EM algorithm and the approach proposed by
Schneider [8] for missing data imputation. This method will be summarized as
follows. The algorithm iterates between three steps, the E-Step, the M-step and
the imputation step. In the E-step, the expected of the log-likelihood function
is computed using the current estimate of the log-likelihood parameters. During
the M-step, new estimates of the log-likelihood function parameters are obtained
using the previous log-likelihood estimates obtained during the E-step. Formally,
the E-Step and M-Step can be expressed as:

E-Step :Q(θt) = E[l(θ|Xo,Xm)]
M-Step :θt+1 = arg max

θ
Q(θt)

where θt is the vector of parameters in the iteration t and l(·) is the log-likelihood
function.

The imputation step is made by using a linear regression model that connects
the variables with missing values and the variables without missing values:

xm = μm + (xo − μo)β + e (1)

where xo ∈ R1×po is the sub-vector of po variables with observable data, xm ∈
R1×pm is the sub-vector of pm variables with missing values, μo ∈ R1×po is the
sub-vector with the mean of the variables with observable data and μm ∈ R1×pm

is the sub-vector with the mean of the variables with missing values. β ∈ Rpo×pm

is the coefficients regression matrix and e ∈ R1×pm is a random vector with mean
0 (zero) and an unknown covariance matrix C ∈ Rpm×pm .

̂β = ̂Σ−1
oo

̂Σom, where ̂Σoo is the covariance matrix estimated from variables
with observable values and ̂Σom is the covariance matrix estimated from variables
with missing and observable values.
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Fig. 1. Each missing values (MV) pattern in the training set has a regression model.
Then, these regression models are used to impute the missing values in the testing set.

In the Schneider’s approach [8], the inverse of the covariance matrix of the
observed data, ̂Σ−1

oo , is iteratively estimated according to the expression:

̂Σ−1
oo ←− ( ̂Σoo + h2

̂D)−1 (2)

where ̂D = Diag( ̂Σoo) is the diagonal matrix consisting of the diagonal elements
of the covariance matrix ̂Σoo and h is a regularization parameter. That is, the
ill-conditioned inverse ̂Σ−1

oo is replaced with the inverse of the matrix that results
from the covariance matrix ̂Σ−1

oo when the diagonal elements are amplified.
This version of the EM algorithm (regEM) is used in several works [7,9],

where the datasets have missing values and it is necessary to perform the classi-
fication task. In this context, the typical way to use this algorithm is to apply it
to the training set and then, separately, to use it in the testing set. This way of
using it, we consider that it is not correct, since every algorithm that works with
a training set, must create a model, which will be later applied to the testing set.
This methodology is always performed with the classification algorithms (ANN,
SVM, etc.) and should also be applied with pre-processing algorithms, such as
dimensionality reduction techniques, and missing values imputation algorithms.

In addition to the above mentioned remarks, our approach solves the problem
that arises when the testing set arrives one data point at a time (very typical
in real situations), since the original proposal can not construct the imputation
model, since it is based on a regression model.

We will call this new version: regEM-Out of Sample (regEM-oos). regEM-oos
can be applied in scenarios where both the training set and the testing set have
missing values. Once used in the training set, the algorithm creates a general
model that consists of as many regression models as missing patterns exist in
the training set. These regression models are based on the Eq. 1, therefore in
addition to using the matrix β, the vector of mean μ must be used. An example
of this procedure, with three information sources Si and three missing values
patterns is shown in Fig. 1.

Although it is very rare, it may occur that a new MV pattern appears in the
testing set. This means that this MV pattern does not have a regression model and
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therefore the imputation can not be made directly. To solve this, it is necessary to
return to the training set and build a model for this new pattern. With the training
set already imputed, we proceed to generate the new pattern found in the testing
set, but in a synthetic way. With this, an imputation model of the new pattern
found is obtained to make future imputations in the testing set.

3 Experimental Results

With the purpose of illustrating how well our approach performs, we consider
three baseline ADNI modalities: cerebrospinal fluid (CSF), magnetic resonance
imaging (MRI) and positron emission tomography (PET). The modalities were
preprocessed according to [4], with 43 out of 819 subjects excluded for not passing
the quality control. The CSF source contains three variables that measure the
levels of some proteins and amino acids that are crucially involved in AD. The
MRI source provides volumetric features of 83 brain anatomical regions. The
PET source (with FDG radiotracer) provides the average brain function, in terms
of the rate of cerebral glucose metabolism, within the 83 anatomical regions.
Hence, each subject consists of 169 features. Table 1 shows details of the data
distribution.

Table 1. Details of the data. First column shows the amount of examples for each class.
The other columns show the amount of examples with MV per modalities. Individuals
with MCI can be divided into two groups: those who remained in a stable condition
(s-MCI) and those who later progressed to AD (p-MCI).

ADNI CSF MRI PET

AD 185 85 0 114

HC 210 107 0 141

pMCI 164 80 0 102

sMCI 217 114 0 132

Total 776 386 0 489

We consider three experiments: AD/HC with 395 subjects and MCI/HC with
591 subjects and pMCI/sMCI with 381 subjects. In each experiment we used
75% of the data to train three classifiers, a K-Nearest Neighbors (K-NN), a ν-
Support Vector Machine (ν-SVM) and a Random Forest (RF) models, evaluated
over 100 runs to avoid bias. The remaining 25% of the data was used for testing.
We employed the implementations found in the scikit-learn library2. The number
K and metric distance for K-NN, ν and σ for ν-SVM and the number of trees
and number of features for RF were determined using 5-fold CV.

2 scikit-learn.org/stable.

http://www.scikit-learn.org/stable
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We performed a normalization process before of the classification step follow-
ing the Out-of-sample strategy. Considering we want the features had an interval
[0, 1], the testing set was normalized with:

Xte
norm =

Xte
raw − Xtr

min

Xtr
max − Xtr

min

(3)

where Xtr
min and Xtr

max are the minimum and maximum from the training set
respectively, and Xte

raw is the original values from the testing set.
For completeness, we include the results when the classifiers are trained solely

with the reduced set of subjects having complete records and thus no imputa-
tion is needed. The number of subjects in this case is 72 for AD/HC, 110 for
MCI/HC and 75 for pMCI/sMCI and is represented with none in the tables.

Tables 2, 3 and 4 show the classification results for the experiments based on
ROC analysis [2].

Table 2. AD/HC multi-modality classification accuracy (acc.), area under the curve
(AUC), sensitivity (sens.), specificity (spec.), and F-measure (F). Results are expressed
as mean (standard deviation).

Classifier Imputation Acc. (%) AUC (%) Sens. (%) Spec. (%) F (%)

K-NN none 82.2(8.9) 93.1(6.4) 90.4(10.9) 76.5(14.1) 82.6(9.3)

regEM 82.9(4.4) 91.3(3.3) 94.3(3.7) 69.4(10.4) 85.6(3.5)

regEM-oos 84.6(3.6) 91.8(2.8) 94.3(3.0) 73.4(7.1) 86.8(3.2)

SVM none 84.7(8.9) 91.8(12.4) 83.4(16.0) 86.7(12.3) 83.1(11.1)

regEM 87.7(3.4) 93.5(2.5) 90.8(5.1) 84.0(6.5) 88.7(3.5)

regEM-oos 88.3(3.1) 93.7(2.5) 91.6(3.3) 84.6(5.4) 89.4(2.9)

RF none 83.0(8.6) 92.0(6.8) 83.6(14.7) 83.7(11.6) 81.9(10.1)

regEM 84.2(4.1) 92.4(2.5) 86.3(9.2) 81.5(9.2) 85.2(5.2)

regEM-oos 86.5(3.6) 93.0(2.5) 88.3(4.6) 84.5(6.0) 87.5(3.3)

It can be noted that the classification improves when the full data set is
used, imputing the missing values. This clearly provides more information to
discriminate among the different diagnostic groups.

These experiments suggest that regEM-oos have the best performance in
AD/HC, MCI/HC and pMCI/sMCI considering that when the difference is
small, a lower standard deviation is preferred.

The classifiers present similar performances in each experiment, but a
remarkable point is that their robustness (low variance) is increased in cases
in which imputation is performed. Additionally, regEM-oos has the least vari-
ance in almost all experiments.

Regarding to execution time, an important feature of regEM-oos is that is
faster than the regEM approach in about 27%. This is because regEM creates
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Table 3. MCI/HC multi-modality classification accuracy (acc.), area under the curve
(AUC), sensitivity (sens.), specificity (spec.), and F-measure (F). Results are expressed
as mean (standard deviation).

Classifier Imputation Acc. (%) AUC (%) Sens. (%) Spec. (%) F (%)

K-NN none 70.3(7.2) 72.5(10.4) 33.8(17.9) 87.3(8.8) 39.2(16.5)

regEM 70.2(4.0) 76.2(4.2) 55.4(11.1) 78.9(6.3) 56.6(7.4)

regEM-oos 70.5(3.9) 76.3(4.0) 57.7(9.0) 78.0(5.5) 58.1(6.1)

SVM none 70.6(9.8) 70.7(17.1) 49.7(24.5) 80.0(17.9) 48.1(19.2)

regEM 69.7(7.9) 74.8(13.0) 56.4(14.6) 77.1(15.0) 56.7(8.3)

regEM-oos 70.6(8.1) 73.9(15.7) 59.7(12.7) 76.7(13.6) 59.1(7.7)

RF none 72.9(7.2) 73.4(9.6) 42.6(18.2) 87.1(7.6) 47.6(16.8)

regEM 71.8(3.9) 77.5(3.9) 45.2(13.1) 86.9(5.1) 52.4(10.8)

regEM-oos 72.7(3.5) 78.0(3.5) 53.6(7.4) 83.7(4.1) 58.3(5.2)

Table 4. pMCI/sMCI multi-modality classification accuracy (acc.), area under the
curve (AUC), sensitivity (sens.), specificity (spec.), and F-measure (F). Results are
expressed as mean (standard deviation).

Classifier Imputation Acc. (%) AUC (%) Sens. (%) Spec. (%) F (%)

K-NN none 53.7(10.1) 58.6(11.9) 55.4(17.5) 55.8(22.1) 55.8(11.4)

regEM 63.7(4.7) 69.8(5.0) 46.1(11.9) 77.2(8.5) 51.4(8.5)

regEM-oos 63.5(4.8) 69.9(4.9) 47.1(11.2) 76.3(8.6) 51.9(8.0)

SVM none 52.6(11.5) 52.6(13.7) 55.9(22.0) 51.4(25.7) 54.6(14.6)

regEM 63.2(4.3) 67.5(7.8) 51.3(13.8) 72.4(10.2) 53.4(9.1)

regEM-oos 63.3(4.1) 68.9(4.7) 52.2(12.4) 72.0(9.4) 54.1(8.1)

RF none 57.3(8.3) 60.9(10.9) 64.9(14.1) 50.2(17.1) 62.3(8.4)

regEM 62.9(4.2) 68.7(5.0) 49.0(12.5) 73.4(9.5) 52.2(8.6)

regEM-oos 64.0(4.5) 70.3(4.5) 53.9(7.8) 72.0(7.2) 56.0(5.5)

a new model for the testing set and regEM-oos use the model created from the
training set. Obviously, while the testing set is larger, the time saving would
become more significant.

4 Conclusions and Future Work

We have seen how imputation techniques allow using additional information,
that in absence of accurate imputation methods would be discarded. In our
experiments we have showed that using our imputation method we can achieve
more accurate results in the task of determining the diagnostic groups to which
ADNI’s subjects belong.
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Our results showed that training classifiers with imputed data is better than
constructing a predictive model with a reduced number of subjects with complete
records. This is supported in part by the fact that the imputation techniques
increase both performance metrics and robustness of the classifiers.

It is necessary to use the Out-of-sample version of the algorithms when we are
working in classification problems. Creating a model with the training set, and
then using it in the testing set is one of the most relevant principles in Machine
Learning. This issue is not typically taken into account within the imputation
and dimensionality reduction literature.

In this work we presented a straightforward Out-of-sample version of regEM
(regEM-oos) that improves the performance of the original algorithm, consider-
ing execution time and metrics based on ROC analysis.

Future work includes studying the performance of regEM-oos with other data
sets and from the theoretical point of view. Furthermore, there is an interest in
analyzing the relationship between the imputation and classification accuracies.

An interesting approach would be to consider the information of the labels
from the training set to create a model for each class. With an ad-hoc model
for each class we believe that the imputation and classification will be better,
but the problem that must be addressed is how to decide which model should
be used when new testing data becomes available.

References

1. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Stat. Soc. B 39(1), 1–38 (1977)

2. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–
874 (2006)

3. Gisbrecht, A., Lueks, W., Mokbel, B., Hammer, B.: Out-of-sample kernel exten-
sions for nonparametric dimensionality reduction. In: ESANN 2012, pp. 531–536
(2012)

4. Gray, K., Aljabar, P., Heckemann, R.A., Hammers, A., Rueckert, D.: Random
forest-based similarity measures for multi-modal classification of Alzheimer’s dis-
ease. NeuroImage 65, 167–175 (2013)

5. Jie, B., Zhang, D., Cheng, B., Shen, D.: Manifold regularized multitask feature
learning for multimodality disease classification. Hum. Brain Mapp. 36, 489–507
(2015)

6. Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data, 2nd edn. Wiley-
Interscience, New York (2002)

7. Rahman, M.G., Islam, M.Z.: Missing value imputation using a fuzzy clustering-
based EM approach. Knowl. Inf. Syst. 46(2), 389–422 (2016)

8. Schneider, T.: Analysis of incomplete climate data: estimation of mean values and
covariance matrices and imputation of missing values. J. Clim. 14, 853–871 (2001)

9. Thung, K.H., Wee, C.Y., Yap, P.T., Shen, D.: Neurodegenerative disease diag-
nosis using incomplete multi-modality data via matrix shrinkage and completion.
NeuroImage 91, 386–400 (2014)



202 S. Campos et al.

10. Van Der Maaten, L., Postma, E., Van den Herik, J.: Dimensionality reduction: a
comparative review. J. Mach. Learn. Res. 10, 66–71 (2009)

11. Yuan, L., Wang, Y., Thompson, P.M., Narayan, V.A., Ye, J.: Multi-source feature
learning for joint analysis of incomplete multiple heterogeneous neuroimaging data.
NeuroImage 61(3), 622–632 (2012)


	An Out of Sample Version of the EM Algorithm for Imputing Missing Values in Classification
	1 Introduction
	2 Proposal
	3 Experimental Results
	4 Conclusions and Future Work
	References




