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Abstract. Recent progress in Bayesian inference has allowed for accu-
rate posterior estimations in complex situations with no idea about a like-
lihood function. Currently, Approximate Bayesian Computation (ABC)
techniques have emerged as a widely used set of free-likelihood methods.
Although there is a large number of different ABC-based approaches
across the literature, all they have in common a hard dependence on free
parameters selection, demanding for expensive tuning procedures such as
grid search or cross-validation. Here, we introduce an Automatic Metric
Learning-based ABC approach, termed AML-ABC. Namely, AML-ABC
matches the simulation and observation spaces within an ABC-based
framework. Attained results on a synthetic dataset and a real-world eco-
logical system show that our approach is a competitive method compared
to other non-automatic state-of-the-art ABC techniques.

Keywords: Approximate Bayesian Computation · Kernel methods ·
Metric learning · Non-linear dynamic system · Statistical inference

1 Introduction

Bayesian-based statistical inference tasks require the calculation of the likelihood
function, which performs an important role as long as it states the probability
of the observed data under a particular model. Therefore, the Bayes’ theorem
leverages the inclusion of a priori knowledge about the studied phenomenon into
the posterior distribution. Indeed, straightforward models gather an analytic
expression for the likelihood function facilitating the evidence assessment; then,
the posterior can be precisely computed. Notwithstanding, for complex models,
to find an exact formula for the likelihood function is often intractable [13].

To deal with this intractability, free-likelihood techniques like Approximate
Bayesian Computation (ABC) have emerged. ABC-based methods assess an aux-
iliary model with different parameter values drawn from a prior distribution to
compute simulations that are compared to the observed data [13]. In particular,
this comparison can be performed using statistics that summarize and charac-
terize the information over large features and observations [5,10]. However, the
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selection of proper and sufficient summary statistic could be difficult for com-
plex models, demanding for alternative approaches that rely on kernel functions
to embed and compare distributions into a Reproducing Kernel Hilbert Space
(RKHS) [4,9]. Recent advances in ABC-based inference have introduced kernel
methods to accomplish more accurate posterior estimations. Authors in [6] devel-
oped a surrogate model as synthetic likelihood to define an adequate number of
simulations within the ABC procedure via a Gaussian process-based framework.
Mitrovic et al. [7] modeled the functional relationship between simulations and
the optimal choice of summary statistics to encode the structure of a generative
model using a kernel ridge regression for conditional distributions. Nonetheless,
the techniques mentioned above require the estimation of different parameters
related to the similarity computation among simulations to approximate the pos-
terior. Then, expensive tuning procedures as grid search and cross-validation are
carried out. Moreover, the user requires a vast knowledge concerning the ABC
algorithm and the studied data to properly tune the free parameters, yielding
to a high influence in the quality of the posterior approximation.

Here, we introduce an automatic version of an ABC algorithm to support
Bayesian inference. Our approach, named AML-ABC, comprises a metric learn-
ing stage based on a Centered Kernel Alignment (CKA) to assess the match-
ing between similarities defined over parameters and simulations [3]. Besides, a
Mahalanobis distance is computed through CKA, and a graph representation
is utilized to highlight local dependencies from both parameter and simulation
spaces in ABC. Achieved results on synthetic and real-world inference problems
demonstrate that our automatic extension of ABC infers competitive posteriors
without requiring any manually fixing of free parameters.

The remainder of this paper is organized as follows: Sect. 2 describes the
mathematical background. Section 3 describes the experimental set-up and the
obtained result. Finally, the conclusions are outlined in Sect. 4.

2 Materials and Methods

ABC Fundamentals. In any Bayesian inference task, the central aim concerns
the computation of a posterior p(θ|y), using a prior distribution ζ(θ) and a
likelihood function p(y|θ), where y ∈ Y stands for the observed data and θ ∈Θ
holds the model parameters. Nonetheless, when the likelihood is intractable,
neither exact nor sampled posterior p(θ|y) ∝ p(y|θ)ζ(θ) can be calculated. ABC
approaches aim to facilitate such an inference via simulation of the likelihood
through a generative model represented by a conditional probability p(x|θ),
where x∈ Y is a random variable standing for the simulated data [13]. Fun-
damentally, an ABC-based framework relies on the acceptance and rejection
of simulated samples x using a distance function dY : Y × Y → R

+. In turn,
an approximate posterior can be estimated such that: p̂(θ|y; ε) ∝ p̂(y|θ; ε)ζ(θ),
where p̂(y|θ; ε)=

∫
B(y;ε)

p(x|θ)dx, B (y; ε) ={x : dY(x, y) < ε}, and ε∈R
+. Note

that setting the value of ε is a crucial stage for obtaining an accurate posterior.
On the other hand, most of the times it is difficult to apply a distance directly

on Y due to a large number of samples and features in real data. In such a case,
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some strategies use a mapping s= ϑ(x) before calculating the distance, where
s∈ S is a feature space and ϑ : Y → S [5]. However, using ϑ(x) often leaks infor-
mation for complex models. Then, some ABC-based approaches approximate
p̂(y|θ; ε) as the convolution of the true likelihood p(y|θ) and a kernel function
κ : Y×Y → R, which imposes a constraint to the rejection of samples as the inner
product κ(x, y)=〈φ(x), φ(y)〉H in a Reproducing Kernel Hilbert Space (RKHS),
H, where φ : Y → H [9]. In practice, given N samples {xn � PXn

}N
n = 1 drawn

from p(x|θn), with θn � ζ(θ), and the observation y � PY , a weighted sample
set Ψ = {(θn, wn)}N

n = 1 is calculated by fixing:

wn = κG (dH(PXn
, PY ); ε) /

∑N

n = 1
κG (dH(PXn

, PY ); ε), (1)

where κG is a Gaussian kernel with bandwidth ε. Eq. (1) is used to approximate
p(θ|y) via posterior expectation as: p̂(θ|y)=

∑N
n = 1 wnκG(de(θ, θn);σθ), where

de stands for the Euclidean distance and σθ ∈R
+. Moreover, dH(PXn

, PY ) rep-
resents a distance over distributions.

Automatic ABC Using Metric Learning. To avoid the influence of the ε value
and the kernel parameters while computing the ABC-based posterior as in Eq.
(1), we introduce an Automatic Metric Learning (AML) approach in the context
of ABC, termed AML-ABC, for enhancing and automating the inference task.
The idea behind AML-ABC is to include the information contained in the candi-
dates {θn}N

n=1 to improve the comparison stage carried out over simulations and
observations. Let Ψ = {θn, xn}N

n=1 be the set of N candidates θn ∈R
P � ζ(θ)

and their corresponding simulations xn ∈R
Q � p(x|θ). Further, let the kernel

function κθ : Θ × Θ → R
+ be a similarity measure between candidates in Θ,

that define the kernel matrix Kθ ∈R
N×N holding elements:

κθ(θn, θn′) =

{
exp(−d2

Θ(θn, θn′)), θn ∈ Ωn′

0, otherwise,
(2)

where Ωn′ is a set holding the M -nearest neighbors of θn′ in the sense of
the distance dΘ : Θ × Θ → R

+. In this paper, to avoid large variations
among components of θn we rely on the Mahalanobis distance d2

Θ(θn, θn′) =
(θn − θn′)TΣ−1

Θ (θn − θn′), where ΣΘ ∈R
P×P is the sample covariance matrix of

{θn}N
n=1. Concerning the feature space S, we assess the similarity via the kernel

κs : S × S → R
+, κs(ϑ(xn), ϑ(xn′)) = exp(−d2

S(ϑ(xn), ϑ(xn′))), to build the
matrix Ks ∈R

N×N , where d2
S : S × S → R

+ and ϑ : Y → S is a feature map-
ping. To perform the pairwise comparison between simulations in S we use the
Mahalanobis distance of the form [2]:

d2
S(ϑ(xn), ϑ(xn′)) = (ϑ(xn) − ϑ(xn′))TAAT(ϑ(xn) − ϑ(xn′)), (3)

where Σ−1
S = AAT stands for the inverse covariance matrix of ϑ(xn)∈R

D

and A ∈R
D×d. In this sense, we use the information concerning the similarity

over candidates in Θ, represented via Kθ , to state the notion of similarity over
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simulations and observation in S, represented via Ks . In particular, we use a
CKA-based measure between the above kernel matrices as [3]:

ρ̂(Kθ ,Ks) =
〈K̄θ , K̄s〉F√

〈K̄θK̄θ 〉F〈K̄sK̄s〉F
, (4)

where K̄ stands for the centered kernel as K̄ = ĨKĨ, being Ĩ = I − 1�1/N
the empirical centering matrix, I ∈ R

N×N is the identity matrix, and 1 ∈ R
N is

the all-ones vector. Moreover, The notation 〈·, ·〉F represents the matrix-based
Frobenius norm. In Eq. (4), ρ̂(·, ·) is a data driven estimator that aims to quantify
the similarity between the parameter space and the feature space. To find the
projection matrix A, we consider the following optimization problem:

Â = arg max
A

log (ρ̂(Ks(A),Kθ )) , (5)

where the logarithm function is used for mathematical convenience. The opti-
mization problem in Eq. (5) can be solved using a gradient descent-based app-
roach [2]. Moreover, we form the weighted sample set Ψ = {(θn, wn)}N

n = 1 by
fixing wn = κE(z, zn)/

∑N
n = 1 κE(z, zn), where κE : Rd × R

d → R is a similarity
kernel defined as:

κE(z, zn) =

{
exp(−||z − zn||22), zn ∈Υ
0, otherwise,

(6)

where Υ is a set holding the M -nearest neighbors of z = ϑ(y)�Â in the sense of
the Euclidean distance. Algorithm 1 summarizes the AML-ABC approach.

Algorithm 1. AML-ABC algorithm
Input: Observed data: y, prior: ζ(θ), mapping: ϑ, M -nearest neighbors, width: σθ.
Output: Posterior estimation: p̂(θ|y).
Metric learning stage:

1: Ψ
′
=

{
(θ

′
n, x

′
n)

}N

n =1
; θ

′
n � ζ(θ), x

′
n � p(x|θ′

n) � Draw training data.

2: Â = argmaxA log (ρ̂(Ks (A),Kθ )) � Compute CKA based on ϑ, M, θ
′
n, and x

′
n.

Inference stage:
3: Ψ = {(θn, xn)}N

n =1 ; θn � ζ(θ), xn � p(x|θn) � Draw simulated data.

4: z = ϑ(y)TÂ � Project features of observed data
5: for n = 1, · · · , N do
6: zn = ϑ(xn)TÂ � Project features of simulated data
7: w̃n = κE(z, zn) � Compute the n-th weight value.
8: end for
9: wn = w̃n/

∑N
n=1 w̃n � Normalize the weights

10: p̂(θ|y) =
∑N

n =1 wnκG(de(θ, θn; σθ)) � Compute the posterior.
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3 Experiments and Results

To test the AML-ABC performance, we consider two experiments following [9]:
a toy problem concerning synthetic data from a mixture model and a Bayesian
inference problem for a real ecological dynamic system. To accomplish an auto-
matic inference, we find the number of M -nearest neighbors as the median of the
optimal number of neighbours per point according to the Local Neighborhood
Selection (LNS) algorithm introduced in [1]. Moreover, the K2-ABC method is
selected as benchmark due to its nice performance over other methods [9].

For the toy problem, we analyze a mixture of uniform distributions of the
form: p(x|π)=

∑C
c = 1 πcU (c − 1, c), where π ={πc}C

c = 1 are the mixing coef-
ficients holding

∑C
c = 1 πc = 1, and C is the number of components. Here,

the aim is to estimate the posterior p(π|y) for C = 5, given synthetic obser-
vations y drawn from the mixture with true parameters (target): π∗ =
{0.25, 0.04, 0.33, 0.04, 0.34}. For concrete testing, we draw N = 1000 samples
from a symmetric Dirichlet prior, π � Dirichlet(1), and then used the mixture
model to form the simulated data by drawing 400 observations for each prior
candidate. Moreover, we employ a histogram with 10 bins as feature mapping
in AML-ABC, and kernel widths γ = 0.1, ε = 0.001 in K2-ABC [9]. As quan-
titative assessment, we use the Euclidean distance E = ||π∗ − π̂||2, where π̂ is
the expected value of the posterior using the weights {wn}N

n=1 obtained by each
method.

For the real dataset experiment, we considere the problem of inferring the
dynamics of an adult blowfly population as introduced in [14]. In particular, the
population dynamics are modelled by a discretised differential equation of the
form: Nt+1 = PNt−τ exp(−Nt−τ/N0)et +Nt exp(−δεt), with Nt+1 denoting the
observation time at t+1 which is determined by the time-lagged observations Nt

and Nt−τ , where et and εt stand for Gamma distributed noise et � G(1/σ2
p, σ2

p)
and εt � G(1/σ2

d, σ2
d). Here, the aim is to estimate the posterior of the parameters

θ = {P,N0, σd, σp, τ, δ} given observed data concerning a time series of 180
observations1. We adopt Log-normal distributions for setting priors over θ [6]:
log P � N (2, 22), log N0 � N (6, 1), log σd � N (−0.5, 1), log σp � N (−0.5, 1),
log τ � N (2.7, 1), log δ � N (−1, 0.42). For AML-ABC we draw N = 5000
samples from the prior and then assess the model to form the simulated data by
drawing 180 observations for each prior candidate. Besides, as feature mapping,
we selected the 10 statistics used in [9]. Moreover, we use the Euclidean distance
E = ||ϑ(y) − ϑ(xn|θ̂)||2 as quantitative assessment, where xn|θ̂ is a simulation
from the model given the expected value of the posterior using each method. In
particular, due to fluctuations produced by εt and et, we draw 100 simulation
for each method and compute the median and standard deviation for E [9].

Toy Problem Results. Since this is a controlled experiment with known parame-
ters π∗, we can find the best possible performance of our AML-ABC by running
the inference stage in Algorithm 1 with w̃n = κE(π∗,πn). We refer to this app-
roach as Best. The previous setting is equivalent to think that the CKA between
1 Available on the supplementary materials of [14].
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Fig. 1. Uniform mixture model results. (a) Estimated mean posterior of mixing coef-
ficients using various methods (b) Weights of the 5 nearest neighbors in AML-ABC.
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Fig. 2. Non-linear ecological dynamic system results. (a)–(f) Prior distribution (solid
line) and AML-ABC-based posterior estimation (dashed line) of model parameters in
the log-space. (g) Some realizations from the model using the expected value of the
parameters found via AML-ABC.
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Table 1. Performance of different ABC schemes over the blowfly dataset.

Method Median (E )± std (E )

Kernel ABC [8] 5.2 ± 3.0

Indirect score ABC [11] 2.1 ± 1.8

Semi-Automatic ABC [10] 1.9 ± 1.2

Synthetic Likelihood ABC [14] 1.7 ± 1.3

K2-ABC [9] 1.0± 0.8

AML-ABC 1.2± 0.4

Kθ and Ks is perfect (Kθ = Ks). Figure 1 shows the Best performance along
with K2-ABC and AML-ABC results over the uniform mixture problem. In
Fig. 1(a), the expected value of the posterior computed for all methods is close
to the target. In particular, we obtained EBest = 0.030, EK2-ABC = 0.063, and
EAML-ABC = 0.064. These results show that our AML-ABC is a competitive
estimator to K2-ABC with a significant advantage concerning the automatic
selection of free parameters. In addition, to provide a better understanding of
the AML-ABC effectiveness, in Fig. 1(b) we provide the weights for the 5 nearest
neighbors (according to the LNS algorithm) used to compute the posteriors. As
noted, the majority of the chosen simulations for AML-ABC match the selected
candidates using the Best, although our approach never observes the target.

Real Dataset Results. Inferring the model parameters in this blowfly dataset is
a very challenging task since the system dynamics can easily move from stable
to chaotic regimes [6,14]. This states an interesting scenario to test the perfor-
mance and robustness of the AML-ABC. In Figs. 2(a) to (f), we provide the prior
and the posterior approximation for each parameter fixing σθ according to [12].
Notice how our proposal updates the beliefs about the model parameters leading
to more concentrated posteriors. In the case of log σp, two modes reflect different
intervals with probable values for driving the noise realization associated with
egg production in the blowfly population. However, there is a predominant mode
that states higher probabilities for this parameter. Moreover, Fig. 2(g) shows the
closest and farthest simulation to the observed data from 100 realization used
to compute E , showing a posterior in stable regime. Finally, Table 1 shows the
performance of AML-ABC compared to different ABC-based methods tested on
the blowfly dataset by authors in [9], where clearly the proposed method is a
quite competitive approach to K2-ABC.

4 Conclusions

We propose an automatic enhancement of the well-known ABC algorithm
devoted to Bayesian inference called AML-ABC. In particular, we include a
Metric Learning approach based on a CKA methodology to quantify the match-
ing between parameter and simulation spaces. Then, a Mahalanobis distance
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is learned through CKA and a graph representation is employed to reveal local
relationships among parameter and simulation samples. Notably, our AML-ABC
does not require the tuning of any free parameter. Besides, obtained results
on a synthetic dataset and a real-world ecological system show the introduced
AML-ABC is a competitive approach compared to other non-automatic state-
of-the-art ABC methods. Future work includes the extension of AML-ABC for
multi-dimensional problems and the inclusion of other dissimilarity measures,
besides the Mahalanobis distance, to deal with complex and/or noisy data.
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