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Abstract. In supervised learning problems, the right label (also known
as the gold standard or the ground truth) is not available because the
label acquisition can be expensive or infeasible. Instead of that gold stan-
dard, we have access to some annotations provided by multiple anno-
tators with different levels of expertise. Hence, trivial methods such as
majority voting (or average in regression problems) are not suitable since
they assume homogeneity between the expertise of the labelers. In this
work, we introduce a regression approach based on Gaussian processes,
where we consider that the expertise of the labelers is non-homogeneous
across the input space–(GPR-MANH). The idea is to assume that the
input space can be represented by a defined number of regions where each
annotator exhibit a particular level of expertise. Experimental results
show that our methodology can estimate the performance of annota-
tors even if the gold standard is not available, defeating state-of-the-art
techniques.

1 Introduction

A typical supervised learning scenario comprises the computation of a function,
which maps from inputs (samples) to outputs (labels), where it is assumed that
exists an oracle who gives the correct label (also known as ground truth or gold
standard) for each sample in the training set [1]. However, in many real-world
applications, the gold standard is not available, because the process to acquire it
is expensive, unfeasible, time-consuming or the label corresponds to a subjective
assessment [2]. Instead of the ground truth, it is possible to access several labels
provided by multiple annotators or sources. This information can be acquired
using web sources, crowdsourcing platforms or the opinion of multiple experts.
For instance, social networks (e.g., Twitter, Facebook) can be used to obtain
information about a specific problem such as product rating or sentiment anal-
ysis [3]. Likewise, in problems where the gold standard is not available, we can
use platforms like Amazon Mechanical Turk (AMT), LabelMe, Crowdflower.1

1 www.mturk.com; labelme2.csail.mit.edu/; crowdflower.com.
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This kind of platforms offers a cost-effective, and efficient way to obtain labeled
data [4]. On the other hand, in problems of computer-aided diagnosis, we can
obtain subjective assessment provided by different experts [5,6]. Nevertheless,
the information collected from these multiple sources could be subjective, noisy
or even misleading [6]. Trivial solutions to deal with multiple labelers scenarios
include (i) to consider as the gold standard the output from one of the labelers,
and (ii) to assume the majority voting (or the average in the case of regres-
sion) from the annotations as an estimation for the ground truth. However, these
approaches are not suitable due to they assume homogeneity between the per-
formance of the annotators [2].

On the other hand, Learning from crowds is a particular area of supervised
learning, which deals with different machine learning paradigms in the presence
of multiple annotators, including classification, sequence labeling, and regres-
sion. Among the methodologies developed in the area of learning from crowds,
we can identify two main groups. The first group named label aggregation are
focused only on estimating the gold standard, which is then used to train a
supervised learning scheme. On the other hand, the second group comprises the
works that are focused on training supervised learning models directly from the
labels of multiple sources. Regarding the classification paradigm, we recognize
the approach proposed in [6], which comprises the estimation of the annotator
expertise (in terms of sensitivity and specificity) through a maximum likelihood-
based approach from repeated responses (labels). In this sense, this model esti-
mate jointly the gold standard and the classifier parameters using a logistic
regression-based framework. Similarly, the authors in [7] propose an extension
of the work proposed in [6] aiming to introduce a Gaussian processes model as
the classification scheme. On the other hand, with respect to real-valued label
(i.e. Regression models), the authors in [1] propose a Gaussian processes model
to deal with multiple annotators, where the performance of the labelers is coded
by including a per-annotator variance in the likelihood function–(GPR-MAH).
However, they assume that the labeler performance is homogeneous across the
input space, which is a weak assumption as was demonstrated in [8]. The above
assumption was relaxed by the work in [9]. This approach codes the performance
using a Gaussian process model, which estimates the annotators expertise as a
non-linear function of the gold standard and the input space.

In this work, we present a regression approach based on Gaussian processes,
where the expertise of the labelers is non-homogeneous across the input space–
(GPR-MANH). Our approach follows the idea of GPR-MAH, in the sense that
we use a Gaussian processes method to model the regression function and assign a
per-annotator variance to capture the performance of the labelers. However, unlike
GPR-MAH, our methodology relaxes the assumption that the performance of each
annotator is homogeneous across the input space by considering that the input
space can be represented by a number specific of clusters, where each annotator
exhibits different performances. We empirically show, using simulated annotators,
that our methodology can be used to learn regression models using noisy data from
multiple sources, outperforming state-of-the-art techniques. The remainder of this
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paper is organized as follows. Section 2 describes the background of our approach.
Sections 3 and 4 present the experiments and discuss the results obtained. Finally,
Sect. 5 outlines the conclusions and future work.

2 Probabilistic Formulation

A regression scenario has the primary goal to estimate a function f : X → Z
using a training set {xn, zn}Nn=1, where xn ∈ X ⊆ R

P is a P−dimensional input
feature vector corresponding to the n−th instance with output zn ∈ Z ⊆ R. In a
typical regression configuration, each sample xn is assigned to a single output zn,
i.e., the ground truth. However, in many real-world regression problems instead
of the ground truth we have multiple labels provided by R sources with differ-
ent levels of expertise [1]. Moreover, we assume that each annotator annotates
Nr ≤ N observations. In this sense, it is possible to build a data set for the anno-
tator r ∈ {1, 2, . . . , R}, Dr ={Xr,yr}, where Xr ∈ R

Nr×P and yr ∈ Yr ⊆ R are
the input feature matrix and the labels given by the r-th annotator, respectively.
Besides, Xr holds row vectors xr

n and yr is composed by elements yr
n, where yr

n

is the m-th annotation of sample xr
n. Now given the data set from multiple anno-

tators D =
{
X = ∪R

r=1Xr,Y = {y1, . . . ,yR}}
, our goals are: First, to estimate

the unknown gold standard for the instances in the training set z=[z1, . . . , zN ].
Second, to compute the performance of the labelers as a function of the ground
truth and the input space. Finally, the third objective is to build a regression
model based on Gaussian processes which generalizes well on unseen data.

Concerning this, we follow the model for the labels proposed in [1], yr
n =

zn + N (0, σ2
r), where they consider that the parameter σ2

r (related to the per-
formance of the r-th annotator) is homogeneous across the input space. However,
as we established previously, the principal aim of our work is to model the anno-
tator expertise based on the assumption that it is no-homogeneous across the
input space. For doing so, we assume that the input space X can be represented
using K clusters based on the input space Euclidean distances, where each anno-
tator exhibits a particular performance. Accordingly, the model proposed for the
labels yr

n follows yr
n = zn + N (0, (σr

k)
2), where (σr

k)
2 ∈ R

+ is the variance for
the r-th labeler in the cluster k ∈ {1, 2, . . . ,K}. Assuming independence between
annotators, and the fact that each annotator labels xn independently, the like-
lihood is given as follows

p (Y|z) =
∏

k

∏

n∼k

∏

r∼n

N
(
yr
n|zn, (σr

k)
2
)

= cN
(
ŷ|z, Σ̂

)
, (1)

where c ∈ R is independent of z, the diagonal matrix Σ̂ ∈ R
N×N has elements

σ̂2
nk, the vector ŷ ∈ R

N has entries ŷnk. Also, σ̂−2
nk = (

∑
r∼n 1/(σr

k)
2)−1, ŷnk =

σ̂2
nk

∑
r∼n yr

n/(σr
k)

2
. The notation r ∼ n refers to “take into account only the

labelers who annotated the n-th observation” and n ∼ k indicates the sample
n belonging to the k-th cluster. Assuming a Gaussian process prior for z given
as p(z) = N (z|0,K), with kernel matrix K computed using a particular kernel
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function k : RP × R
P → R, the posterior over the latent variable z is computed

as follows p(z|Y,X) = N (z|m,V), where m = (K−1 + Σ̂−1)−1Σ̂−1ŷ, and
V = (K−1 + Σ̂−1)−1. In turn, it can be shown that the posterior over a new
observation f(x∗) follows

p(f(x∗)|Y) = N (f(x∗)|f̄(x∗), k(x∗,x′
∗)), (2)

where f̄(x∗) = k(x∗,X)(K + Σ̂)−1ŷ and k(x∗,x′
∗) = k(x∗,x′

∗)−k(x∗,X)(K +
Σ̂)−1k(X,x′

∗). The free parameters related to the model (the hyper-parameters
of the kernel function, and the variances associated to the annotators in each
region) are estimated by optimizing the negative log of the evidence, which is
given as

− log p(Y) =
1

2
log |K + Σ̂| + 1

2
ŷ�(K + Σ̂)−1ŷ − 1

2
log |Σ̂|

+
1

2

∑

k

∑

n∼k

∑

r∼n

(yr
n)2

(σr
k)2

− 1

2

∑

k

∑

n∼k

ŷ2
nk

σ̂2
nk

−
∑

k

∑

n∼k

∑

r∼n

log
1

σr
k

+
ζ

2
log 2π,

where ζ =
∑R

r=1 Nr. To summarize, we propose a regression scheme with multi-
ple annotators based on Gaussian processes, where the performance of the anno-
tators is coded by including a per-annotator variance in the likelihood function.
Unlike GPR-MAH, we assume that the input space is represented by K regions,
where the annotators exhibit a particular performance, which is represented by
a variance (σr

k)
2.

3 Experimental Set-Up

Testing Datasets. To test our GPR-MANH, we use three datasets for regres-
sion of the well-known UCI repository2. The used datasets include: Auto
MPG–(Auto), Concrete Compressive Strength–(Concrete), and Boston Housing
Data–(Housing). The above datasets were chosen based on state-of-the-art works
[1,9].

Simulated Annotations. The datasets from the UCI repository are mainly
focused on supervised learning without multiple sources. Thus, we establish two
methods for simulating multiple annotators: (i) Homogeneous Gaussian noise [1],
that samples a random number εrn ∈ R from a Gaussian distribution with zero
mean and variance τ2

r ∈ R
+; then the annotations are simulated as, yr

n = zn+εrn.
Accordingly, τ2

r codes the performance of the annotators, the higher is its value,
the lower the expertise level of the r-th labeler. (ii) Non-homogeneous Gaussian
noise [8]. This simulation approach comprises the following steps: First, we split
the data into L clusters using the k-means algorithm. Next, the annotations

2 http://archive.ics.uci.edu/ml.

http://archive.ics.uci.edu/ml
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given by the r-th annotator for samples in the l-th cluster follows, yr
nl = zn +

N
(
0, λ2

lr

)
, where λ2

lr ∈ R
+ codes the labeler expertise in the region l. Hence,

we simulate labelers where its expertise varies depending on the input space.

Validation Approaches and Learning Assessments. Aiming to validate
the performance of our approach, we take into account the following state-of-the-
artmodels. (i)GaussianProcess-based regressionwithmajority voting–(GPR-Av),
where a typical regression model is trained using as the gold standard the average
from the annotations. The kernel hyperparameters related to this Gaussian pro-
cesses are estimated by optimizing the marginal likelihood [11]. (ii) Learning from
Multiple Observers with Unknown Expertise–(LMO), that uses a Gaussian process
to code the expertise of the labelers as a function of the gold standard and the input
samples. The parameter estimation is carried out using a Maximum a Posterior
(MAP) approach [9]. (iii) Learning from Multiple Annotators with Gaussian Pro-
cesses–(GPR-MA), where a per-annotator variance is included in the likelihood
function to capture the information from multiple annotators. The hyperparam-
eters related to the kernel function and the variances of each annotator are esti-
mated by minimizing the minus log of the evidence.

Furthermore, the validation is carried out by estimating the regression per-
formance in terms of the mean squared error (note that we have access to the
gold standard). A cross-validation scheme is carried out with 30 repetitions (70%
of the samples as training and 30% as testing).

4 Results and Discussions

First, we perform a controlled experiment aiming to verify the capability of our
approach for dealing with regression setting in the context of multiple sources.
For this first experiment, the training samples X are generated by randomly
selecting 60 points in the interval [0, 1], and the ground truth is computed as
zn = sin(2πxn) sin(6πxn). The instances for testing are formed with 600 equally
spaced samples from the interval [0, 1]. We simulate three labelers with different
levels of expertise by using the simulation methods described in Sect. 3. For the
“Homogeneous Gaussian noise” we use τ = (0.25, 0.5, 0.75). On the other hand,
for the“Non-homogeneous Gaussian noise”, we split the input space into three
regions and use the following parameters:

Λ =

⎛

⎝
0 0.65 1.0

0.25 0 0.75
0.1 0.75 0

⎞

⎠ .

Here, the matrix Λ is formed by elements λ2
lr, which indicates the variance for

the r-th annotator in the cluster l. For testing our approach, we use a clustering
algorithm based on affinity propagation [12] aiming to obtain a proper represen-
tation of the input space X . Similarly, for the Gaussian processes model, the
kernel is fixed as a squared exponential function [11]. Figure 1 shows a visual
comparison among the performance of our GRP-MANH and the methods con-
sidered for validation (GPR-Av, LMO, GPR-MA), considering the case when the



96 J. G. González et al.

Fig. 1. Results for the first experiment. In (a) we expose the ground truth
and the synthetic annotations, which are generated using the simulation method
“Non-homogeneous Gaussian noise”. In (b), (c), (d), (e), and (f) we respectively show
the regression results for GPR-GOLD, GPR-Av, LMO, GPR-MA, and GPR-MANH.
Shaded areas represent the variance for the predictions.
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data from multiple annotators are generated using “Non-homogeneous Gaussian
noise”. Remarkably, we note that our approach can perform regression settings
in scenarios where the gold standard is not available, and the expertise of the
annotators is not homogeneous across the input space. In fact, it is possible
to observe that the uncertainty of the predictions of our approach is remark-
ably lower when compared with the validation methodologies. The above can be
explained in the sense that our GRP-MANH can perform a better codification
of the annotator expertise.

Now, we carry out regression experiments using three datasets from the UCI
repository, where we simulate three annotators with different levels of expertise
using the simulation parameters described below. Table 1 reports the mean and the
standard deviation for the root mean squared error–(RMSE) predicted. Besides,
the method with the highest performance is highlighted in bold, excluding the
upper bound (GPR-GOLD), which is a Gaussian Processes for regression trained
with the true labels. As seen, most of the regression methods from multiple anno-
tators considered in this work (GPR-MA, and GPR-MANH) outperform the aver-
age baseline (GPR-av) in most cases, which is not surprising, since this baseline
does not consider differences between the expertise of the labelers. Furthermore,
we empirically demonstrated that our approach is not affected where the perfor-
mance of the annotators is not homogeneous across the input space. In fact, our
GRP-MANH outperforms all the models considered in this work for validation
under the two methods used for generating the synthetic annotations (homoge-
neous Gaussian noise and non-homogeneous Gaussian noise). The above can be
explained in the sense that due to GPR-MANH is based on the assumption that

Table 1. UCI repository regression results. Bold: the method with the highest
performance excluding the upper bound (target) classifier GPR-GOLD

(a) Homogeneous Gaussian noise

Method GPR-GOLD GPR-Av LMO GPR-MA GPR-MANH

RMSE× 100

Auto 35.40 ± 3.10 59.41 ± 7.03 70.30 ± 9.90 39.07 ± 9.41 37.93± 3.58

Concrete 40.05 ± 2.16 58.43 ± 1.95 71.89 ± 13.28 44.63 ± 2.39 43.92± 2.31

Housing 38.87 ± 5.90 56.85 ± 4.46 68.65 ± 11.48 38.96 ± 4.44 38.92± 4.50

Average 38.10 58.23 70.28 40.89 40.26

(b) Non-homogeneous Gaussian noise

Method GPR-GOLD GPR-Av LMO GPR-MA GPR-MANH

RMSE× 100

Auto 35.40 ± 3.10 54.49 ± 10.56 67.52 ± 10.91 36.82 ± 3.18 36.42± 3.14

Concrete 40.05 ± 2.16 54.46 ± 2.48 84.60 ± 8.67 43.96 ± 2.37 42.28± 2.13

Housing 38.87 ± 5.90 54.62 ± 3.86 74.72 ± 11.56 45.56 ± 5.81 39.93± 5.21

Average 38.10 54.52 75.61 42.11 39.54
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the input space can be represented by a defined number of partitions, where each
annotator exhibits a particular performance in each cluster. We highlight that the
promising results of our approach are achieved based only on the responses from
multiple annotators without considering any prior information.

5 Conclusion

In this paper, we presented a probabilistic framework based on Gaussian pro-
cesses, termed GPR-MANH, to deal with regression problems in the presence
of multiple annotators. Our approach relaxes the assumption that the perfor-
mance of each annotator is homogeneous across the input space. GPR-MANH
assume that the input space can be divided into K regions, where each anno-
tator exhibit a particular level of expertise, which is coded by a variance (σr

k)
2.

Then, the annotations are modeled as a version of the gold standard corrupted
by additive and non-homogeneous Gaussian noise with zero mean and variance
(σr

k)
2. Furthermore, we tested our approach using synthetic datasets from the

UCI repository and simulate the annotations from multiple annotators following
two different models (see Sect. 3). The results show that the proposed method
can be used to perform regression problems in the context of multiple labelers
with different levels of expertise. In fact, in most cases, our approach achieves
better results when compared to different state-of-the-art techniques [1,9].

Finally, note that GPR-MANH loosens the assumption that the performance
of the annotators only depends on the ground truth labels. As future work, this
could be taken a step further by modeling the performance of the annotators as
a function of the gold standard and the input samples through a Heteroscedastic
Gaussian processes approach. Also, our method assumes independence between
the opinions of the annotators; though it is suitable to consider that the label-
ers make their decisions independently, it is not true that these opinions are
independent, due to there are possible correlations between the expert views.
Accordingly, we expect to relax this assumption by using a probabilistic frame-
work that allows to code the inter-annotator dependencies.
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