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Abstract. The automated recognition of human activity is an impor-
tant computer vision task, and it has been the subject of an increasing
number of interesting home, sports, security, and industrial applications.
Approaches using a single sensor have generally shown unsatisfactory
performance. Therefore, an approach that efficiently combines data from
a heterogeneous set of sensors is required. In this paper, we propose a
new method for human activity recognition fusing data obtained from
inertial sensors (IMUs), surface electromyographic recording electrodes
(EMGs), and visual depth sensors, such as the Microsoft Kinect R©. A
network of IMUs and EMGs is scattered on a human body and a depth
sensor keeps the human in its field of view. From each sensor, we keep
track of a succession of primitive movements over a time window, and
combine them to uniquely describe the overall activity performed by
the human. We show that the multi-modal fusion of the three sensors
offers higher performance in activity recognition than the combination of
two or a single sensor. Also, we show that our approach is highly robust
against temporary occlusions, data losses due to communication failures,
and other events that naturally occur in non-structured environments.
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Data fusion · Support vector machine · Hidden Markov Model

1 Introduction

The analysis of human activity is a critical component for applications in fields
such as health, security, sports, among others. Performing this task in an auto-
matic manner is challenging and has prompted several researchers to attempt a
multitude of approaches [3,5,19]. Among the most common devices used for this
task are depth cameras (Kinect R©). Some approaches use the spatial coordinates
of human body joints and then compute feature vectors that can be used for
classification. In [16], the authors use polar coordinates for the characterization
of joints in order to achieve higher performance in activity classification. Other
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methods use classifiers (K-means, SVM) to generate a codebook with key pos-
tures and subsequently employ a Hidden Markov Model (HMM) to recognize the
different combinations of postures and thus identify the activity being performed.
However, all these methods present limitations caused by partial occlusions of
the target [4,15].

Sensors such as Inertial Measurement Units (IMUs) are also used for activ-
ity recognition [2,18]. However, these sensors require high processing capabili-
ties [13], and most of the time a single sensor is not sufficient to perform sat-
isfactory detection [1]. Electromyographic signal sensors (EMG) are also useful
for activity recognition [6,14]. However, sophisticated signal processing and mul-
tiple sensors are also required for adequate detection accuracy. Kang et al. use
Mel-Frequency Cepstral Coefficients (MFCC), obtaining an activity recognition
accuracy of 85% [11]. Korbinian et al. use an HMM for activity recognition and
neural networks for motion segmentation, reporting high accuracy rates between
93% and 100% [12]. There is a consensus that fusing data from different sensors
improves human activity recognition systems [5,16]. Also, a single sensor modal-
ity is generally not capable of identifying the wide range of human activities.
Although several methods for human activity recognition that use multi-modal
fusion approaches have been proposed [7,9], few techniques take more than two
sensing modalities into account at the same time. Among the few recent works
that do use multi-modal approaches, Zhand et al. employ a model that is based
on primitive motions to classify movements using Bag of Features (BOF) tech-
niques with histograms of primitive symbols [17]. In particular, to the best of our
knowledge, no existing method fuses the information of IMUs, EMGs, and depth
sensors simultaneously. Therefore, we propose a fusion method that combines the
strengths of each sensor to provide better performance.

2 Proposed Method

This paper proposes an activity recognition method based on primitive motion
detection. Our method is comprised of two main steps. First, we analyze the
sensor data over a small time window to perform primitive motion classification,
creating a motion sequence from each sensor. Second, this sequence of primitives
is fed into a Hidden Markov Model that classifies the overall activity. An overview
of the prediction and training methods is shown in Fig. 1. To validate our method,
we built an annotated database containing 5 different human activities. Each
activity was performed 3 times by 16 different individuals. For each subject, we
captured raw data from 4 IMUs, 4 EMG sensors, and a Kinect R© device. Our
dataset is publicly available at https://goo.gl/6F82wd.

2.1 Primitive Motions Recognition

Models based on primitive motions are inspired on techniques from human speech
analysis [8]. In speech recognition, phrases are generally divided into isolated
phonemes. These phoneme models are used as basic blocks in order to build

https://goo.gl/6F82wd
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Fig. 1. Overview of the training and classification processes of our proposed approach.

words and phrases in a hierarchical way [10]. Our motion detection model follows
a similar idea to that of Zhand et al. [17] in the sense that each activity is
represented as a sequence of sub-movements, or primitive motions, generating a
unique signature that will be used for classification of the overall activity.

Primitive Motions Encoding. In this work, we propose eight primitive
motions to train the HMM system. These motions are: (1) Repose, (2) Partially
crouched, (3) Fully crouched, (4) In midair, (5) Quarter rise arm, (6) Three-
quarters arm rise, (7) Step forward with right foot and (8) Step forward with
left foot.

Feature Extraction. From each sensor modality, a set of features is extracted
from the video sequence during a time observation window, which was set exper-
imentally to 3 s. For the Kinect R©, the descriptor vector is obtained from the 14
human pivot points. The sensor is able to provide data at 30 samples per second.
However, our feature vector is composed of groups of 3 samples, corresponding
to an overall rate of 10 samples per second. Given the set of body joints in Carte-
sian coordinates, all these points are converted to polar coordinates vis-a-vis the
center of mass:

Pi = [r1 θ1 r2 θ2 . . . r14 θ14] , (1)

where i is the i-th sample window, with i = {1, 2, 3}. In addition, the mean
m and standard deviation v are computed over all the coordinates. The final
feature vector for the Kinect sensor is then defined according to

KIT = [P1 P2 P3 mx my mz mr mθ vx vy vz vr vθ] . (2)

For the IMUs, 4 sensors were attached near the wrists and knees of the
subjects. Each IMU provides 30 samples per second. Again, we used the average
of 3 samples to compute our features. Therefore, the IMU vector is also available
at 10 samples per second. With the IMU data Ik = [ax ay az aθ aφ]1×5, where k =
{1, 2, 3, 4} is the k-th IMU, we compute the following descriptors: (1) Features
based on the physical parameters of the human motion [18], and (2) Statistical
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Descriptors. The overall IMU descriptor is a combination of the IMUk descriptor
for each of the sensors in the network, i.e.,

IMUF = [IMU1 IMU2 IMU3 IMU4] . (3)

For the EMGs, we track the activity of 4 body muscles. We obtain the signal
Ei from each muscle at a sampling frequency of 2 kHz, where i is the i-th EMG
sensor. Ei is segmented by using Vj windows of 200 samples where j is the jth
window. Each window Vj is concatenated to form a vector Wi and this vector is
characterized by a Daubechies Wavelet transform with 35 orthogonal coefficients
and 6 levels, which produces the feature vector EMG1×1300.

Motion Classification. We use three multi-class support vector machines with
classification strategy “One-vs-All” with Gaussian kernels to separate the data.
The same process is used with the Kinect, IMU, and EMG sensors.

2.2 Activity Recognition

We use our set of primitive motions described in Sect. 2.1 to classify the following
activities: (1) Stand still, (2) Squat and stand up, (3) Jump, (4) Raise right
hand, and (5) Jog. To classify each activity from this set, the outputs of the
three SVMs are used as input to an HMM. An HMM is chosen because it has
been successfully used to detect and encode sequences over time (i.e., the ones
produced by the SVMs). Deep learning methods can also be explored in a future
work.

Hidden Markov Model Classification (HMM). As described in Sect. 2.1,
each SVM classifier generates a label that corresponds to the information pro-
vided by the different sensors. The vectors EI correspond to the network of
IMUs, EK to the Kinect R© device, and EE to the EMGs. The data fusion
process consists of generating a EF feature vector with the labels from the
SVM classifiers. EF is built by concatenating each classifier label during
motion capture.

EF =
[
[EK1 EK2 . . . EK30] [EI1 EI2 . . . EI30] [EE1 EE2 . . . EE30]]90×1 (4)

2.3 Training and Validation Process

We train our multi-class SVM models using sequential minimal optimization
(SMO). For HMM training, we used 24 states and 32 centroids for the construc-
tion of the codebook. We evaluate our models using a cross-validation strategy
that partitions the database with 70% of the data for training and 30% for eval-
uation and generate the confusion matrix for each classifier. This process applies
a Monte Carlo analysis, where the stop criterion is defined by

‖diag (Mk) − diag (Mk−1)‖2 < th, (5)

where Mk is the confusion matrix at iteration k and th is the error threshold.
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3 Results

We show the results to validate the performance of our method as a function
of the sensors used to collect the data. Initially, we evaluate the performance of
every sensor modality and the different combinations of sensors. The assessment
is based on two basic steps: primitive motion analysis and activity recognition
analysis. The first step carries out the performance analysis of the SVM classifiers
for the proposed primitive motions. The second step validates the human activity
classification using an HMM.

Table 1. Traces of the confusion matrices for the primitive motion classification
analysis.

Class Kinect IMU EMG

All joints All For 1, 3 and 4 All For 1, 3 and 4

C1 86.77 ± 3.79 86.77 ± 0.73 81.33 ± 0.88 72.28 ± 5.83 62.52 ± 5.56

C2 77.57 ± 3.81 78.71 ± 2.10 75.51 ± 2.62 66.51 ± 1.13 67.81 ± 0.26

C3 71.86 ± 8.05 71.46 ± 4.33 69.29 ± 4.60 70.84 ± 4.73 73.57 ± 4.03

C4 89.95 ± 1.46 74.52 ± 0.93 83.87 ± 1.06 71.49 ± 1.33 79.34 ± 1.48

C5 90.47 ± 3.15 76.51 ± 5.25 56.85 ± 5.38 59.43 ± 5.21 45.44 ± 5.05

C6 96.78 ± 1.33 93.07 ± 2.02 0.84 ± 3.53 63.88 ± 2.35 79.03 ± 2.37

C7 75.68 ± 1.95 61.43 ± 2.91 54.68 ± 2.95 50.54 ± 1.84 51.98 ± 1.84

C8 75.63 ± 2.97 57.56 ± 2.73 55.64 ± 2.85 34.08 ± 2.50 55.71 ± 2.51

Average 84.69 ± 3.31 75.00 ± 2.63 59.76 ± 2.98 61.13 ± 3.12 64.43 ± 2.89

3.1 Primitive Motion Analysis

We use the validation approach described in this section to obtain the confusion
matrices of the Kinect R©, IMU, and EMG sensors. The traces of the recognition
confusion matrices of the primitive movements (using all the sensors as well as the
minimum number of sensors that guarantees a reliable detection performance)
are shown in Table 1. The Kinect R© sensor provides the best primitive movement
detection results with an average detection value of approximately 85%, which
is substantially higher than those of the other sensors. The analysis of the set
of IMU sensors demonstrates a comparable performance with the Kinect in the
first three primitive movements. While the EMG sensors alone perform relatively
poorly, they can still obtain a precision higher than 70% for classes 1, 3 and 4.

We evaluated the performance of the subsets of sensors by systematically
removing the features corresponding to each sensor from our classification sys-
tem. In columns 4 and 6 of Table 1, we report the results obtained from the
subsets that showed the best performance. As the table indicates, while remov-
ing a single IMU sensor results in a substantial accuracy reduction for class 6
and a more modest reduction for class 5, the other activities remain mostly at
the same performance level. The subset of EMG sensors, on the other hand,
show comparable performance for most classes.
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3.2 Activity Recognition Analysis

Table 2 shows the traces of the confusion matrices for the HMM-based activity
recognition for each sensor category. The results correspond to 181 Monte Carlo
iterations for each sensor. Our results demonstrate that the Kinect or the IMU
sensors alone provide high classification accuracy for all the activities. The EMG
sensors show high classification performance for activities 2, 3, 4 and 5. Also
shown in the table are the results of 30 Monte Carlo iterations using a single
IMU sensor, which demonstrate that it is possible to recognize all the activities
with a single sensor.

Table 2. Traces of the confusion matrices for the activity recognition analysis.

Activity Kinect IMU EMG

All joints All For 1 All

1 93.50 ± 10.77 99.80 ± 1.07 100.00 ± 0.00 38.78 ± 16.33

2 90.30 ± 9.06 98.33 ± 3.49 99.49 ± 1.03 90.94 ± 11.23

3 84.96 ± 11.31 96.14 ± 7.09 92.27 ± 9.76 96.16 ± 4.63

4 97.16 ± 7.39 98.43 ± 4.43 99.60 ± 1.02 94.08 ± 3.94

5 94.86 ± 7.90 100.00 ± 0.00 87.34 ± 12.22 89.69 ± 11.07

Average 92.15 ± 9.29 98.18 ± 3.22 95.74 ± 4.81 81.93 ± 8.52

Table 3. Performance comparison for different combinations of sensors.

Sensor group C1 C2 C3 C4 C5 Average

Kinect R©+IMU+EMG 100.0 ±
0.00%

99.60 ±
1.53%

99.62 ±
1.03%

99.09 ±
1.59%

95.76 ±
3.36%

98.81 ±
1.81%

Kinect R©+IMU 100.0 ±
0.00%

100.0 ±
0.00%

97.71 ±
2.50%

97.95 ±
2.36%

98.39 ±
2.10%

98.81 ±
1.81%

Kinect R©+EMG 91.00 ±
4.78%

100.0 ±
0.00%

98.8 ±
1.82%

97.68 ±
2.51%

95.51 ±
3.45%

96.81 ±
2.93%

IMU+EMG 100.0 ±
0.00%

98.14 ±
0.02%

99.46 ±
1.23%

99.67 ±
0.96%

96.65 ±
3.00%

98.78 ±
1.78%

The results obtained using combined sensors are reported in Table 3, which
shows the average value of the main diagonal of the confusion matrices as well
as their uncertainty intervals with a confidence rate of 99%. As shown in the
table, the Kinect R©+IMU+EMG and the Kinect R©+IMU combinations show
the best overall performance, with a success rate of 100% for class 1 in both
cases and comparable results for the other classes. By comparing these results
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with those shown in Table 2, we can see that combining the Kinect R© and EMG
sensors improves the activity recognition performance by 4.66% with respect to
the Kinect R© sensor alone and 14.88% for the EMG sensor. The integration of
the IMU and EMG sensors yields a similar performance improvement.

4 Conclusions

We developed an automatic method for human activity recognition based on
multi-modal data fusion from a network of IMU and EMG sensors and a Kinect R©
sensor. Our approach uses multi-class support vector machines for primitive
movement detection and subsequently classifies the activity according to the
sequences provided by the SVM outputs over a time interval using an HMM.
This work studies the contribution of each sensor to the recognition task by
evaluating the performance of different sensor configurations. To perform robust
activity recognition, it is necessary to use all the sensors due to the potential
failures that these devices might show during the process. These failures include
partial occlusions or self-occlusions from the Kinect R© or connection losses in the
wireless communication systems, which are commonly used to acquire data from
the IMU or EMG sensors. Multi-modal information from every sensor might
mitigate mistakes caused by such failures. The proposed approach was tested
in an annotated dataset that was created specifically for this work, because
there was no publicly available database with synchronized recording of these
three sensor modalities. We made the dataset publicly available to facilitate
comparisons and accelerate the research in this area. In the future, the database
must be expanded to validate our approach on a wider set of activities.
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