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Abstract. The Rasch model is used to estimate student performance
and task difficulty in simple test scenarios. We design a workflow for
enhancing student feedback by release of difficulty parameters in the
Rasch model with privacy protection using differential privacy. We pro-
vide a first proof of differential privacy in Rasch models and derive the
minimum noise level in objective perturbation to guarantee a given pri-
vacy budget. We test the workflow in simulations and in two real data
sets.
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1 Introduction

Protection of private information is a key democratic value and so-called ‘privacy
by design’ is core to the new European General Data Protection Regulatory
(GDPR) [6].

Privacy by design as a concept has existed for years now, but it is only
just becoming part of a legal requirement with the GDPR. At its core,
privacy by design calls for the inclusion of data protection from the onset
of the designing of systems, rather than an addition. More specifically -
‘The controller shall..implement appropriate technical and organisational
measures..in an effective way.. in order to meet the requirements of this
Regulation and protect the rights of data subjects’.

Differential privacy is one such tool allowing a ‘controller’ to train a machine
learning model on inherently private data, but with mathematical bounds on
the actual loss of privacy when results are released [4,8]. Differential privacy is
based on randomized algorithms using noise to reduce the probability of breach
of privacy. The key idea is to secure that the randomized output does not in a
significant way depend on any of the possible data subjects’ data.
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Educational technology is important to serve the increasing needs for life-
long learning [10]. Learning processes and tests are typically highly personal, yet,
significant gains are conceivable from integrating and sharing such information.
Sharing could, e.g., be used to provide more detailed feedback on tests, hence,
enhance the learning process. The basic question addressed in the present work
is if differentially private machine learning methods can be used to provide more
detailed feedback on students’ tests, while still respecting the privacy of the
individual students.

The concept is illustrated in Fig. 1. The use case concerns a class of students
each answering a set of tasks. The teacher (‘the controller’) can by conven-
tional means estimate each students performance and release this information
in private to the given student. Here our aim is in addition to share a diffi-
culty score for each task and investigate whether it is feasible to compute this
score in a differentially private manner, hence, with mathematical bounds on
the amount of individual information leaked by releasing the difficulty scores.
Given the privatized difficulty scores, every student can then use their sensitive
data to estimate their own ability scores and probabilities of passing a subject.
The paper is organized as follows. We first present the differential privacy model
in the educational technology context. Student performance and test scores are
inferred using item response theory (‘Rasch model’). Next, we investigate the
loss of accuracy when privacy is enforced at various privacy budgets. Finally, we
demonstrate viability in a real world data set. The proof of the differential pri-
vacy mechanism (so-called objective perturbation) is provided in an appendix.
The original contributions can be summarized as follows: (1) We define a work-
flow and model for privacy preserving machine learning of student performance
and task difficulty. (2) We show by simulation that the student performance is
well estimated for each student separately. (3) We give the first proof of differ-
ential privacy for the Rasch model based on so-called objective perturbation. (4)
We derive the minimum noise level that allows us to release the task difficulty
at a given privacy budget.

All code can be found at the following github repository.

Fig. 1. Concept of the differentially private Rasch model and its use in enhanced
feedback in teaching.

https://github.com/DavidEnslevNyrnberg/PrivRaschPuplish.git


Differentially Private Rasch Model 115

2 Preliminaries

The concept of differential privacy is based on a privacy parameter or ‘budget’
ε. The algorithm A is ε-differentially private if for all data sets D1 and D2 that
differ by a single entry (data subject)

P [A(D1) = w] ≤ P [A(D2) = w] exp(ε), (1)

where P is the probability taken over the randomness used by the algorithm
A, and w is the output of the algorithm. The privacy budget quantifies how
likely it is that a well-informed adversarial can determine whether a specific
data subject participated or not. The randomness is added to the algorithm to
hinder this identification. This randomness is achieved e.g. through the addition
of noise. This noise is scaled as Δf/ε where Δf is the sensitivity of a function f ,
defined as

Δf = max ‖f(D1) − f(D2)‖1, (2)

where again D1 and D2 differ in a single entry [8].
The data sets we work with are arranged as a (number of students N) ×

(number of test items I) matrix X, and every entry stands for a right or wrong
answer of a student to an item. In this work, we consider differential privacy in
the sense that the output from our model should not depend much on whether
a particular student is in the set or not. That is, for X and X̃ with Xn,i = X̃n,i

for all n = 1, . . . , N − 1 and i = 1, . . . , I, so two data sets that can differ in at
most one row (corresponding to one student), we want to achieve

P (w|X)
P (w|X̃)

≤ eε, (3)

where w is the output of the algorithm.
The Rasch model [3] is a simple example of item response theory (IRT).

IRT concerns performance testing quantifying the probability that students can
answer a specific test task in terms of the difficulty of the task and their general
ability. The model is similar to the logistic regression and used to estimate the
probability of passing a task

P (Xn,i = 1|βn, δi) =
exp(βn − δi)

1 + exp(βn − δi)
, (4)

where βn models the ability of student n and δi is the difficulty of task i. Xni

is a dichotomous observation of a student’s (n) correct or incorrect answer to a
task (i), where 1 is a correct answer, and 0 is an incorrect answer. The model
is generated by estimating δi and βn from the results of a particular test. The
parameters are estimated by maximizing the likelihood
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Λ =
∏

n

∏

i

exni(βn−δi)

1 + e(βn−δi)
. (5)

In our work, we will introduce differentially private methods of estimating β and
δ, but only the δ-values will be released to the public. Every student can then,
based on the public δ and their personal results, estimate their own parameter βn.

3 Methods

We will implement this workflow, i.e., release differentially private δ parame-
ters and then re-estimate the parameters βn on Xn,:, by first calculating both
parameters with differentially private algorithms, assuring a private δ, then re-
estimating each βn given that δ. The re-estimation was also proposed in Choppin
[3]. We will investigate the impact of the re-estimation compared to the global
parameter estimation in Sect. 4.

We consider two different methods for constructing a differentially private
Rasch Model. The first one is the objective perturbation, first introduced by
Chaudhuri and Monteleoni for logistic regression [1], and analyzed in more detail
by Chaudhuri et al. [2]. For the differentially private Rasch model, we use a
slightly modified version of the objective perturbation, and prove that it is ε-
differentially private as defined in Eq. (3).

We will also consider a simple reference method based on perturbing sufficient
statistics as discussed in [7]. By adding enough noise to the sufficient statistics,
we may release them as differentially private. Then any algorithm based on
these statistics will be differentially private. The latter observation follows from
the post-processing theorem [5]. For the Rasch model, the sufficient statistics
are rn =

∑I
i Xn,i and si =

∑N
n Xn,i, since those are all that is needed for

minimizing the regularized objective function. We add noise to the vectors r
and s, scaled with their sensibilities: if student n in the data set is changed,
rn will change by at most I, and so the L1 norm of r will change by at most
I. Similarly, si can change by at most 1 for every i, so again, the L1 norm of
s changes by at most I. So the noise we add to both vectors is scaled with
I/ε as in [7]. Since making the sufficient statistics differentially private is more
general than objective perturbation, and does not use the specific structure of
the learning algorithm, we expect it to be weaker (adding more noise).

As we notice below, the objective perturbation approach effectively perturbs
the sufficient statistics with noise scaling as

√
I/ε, while direct perturbation of

the sufficient statistics requires noise scaling as I/ε [7]. In the following we will
show the costs of the less favorable scaling.

An important aspect of learning the Rasch model parameters is to quantify
the available prior information. In the educational technology context we could
imagine substantial prior information to be present from earlier exams etc. Here
we for simplicity assume that the test difficulties and student abilities both follow
normal distributions, hence, we add a regularization term λ

2wT w, where w is the
entire parameter vector w = [β δ], to the Log likelihood function in equation (5).
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A discussion on how to estimate parameter λ while preserving differential privacy
can be found below.

Algorithm 1 describes the details of the modified objective perturbation algo-
rithm for the differentially private Rasch model.

Algorithm 1:

– Draw vector b with dimension I from density function h(b) ∝ exp (− ε√
I
). To

do that, draw direction uniformly at random from the I dimensional unit
sphere, and draw the norm from Γ(I,

√
I

ε ).
– Minimize

F (β, δ) =
N∑

n

I∑

i

log(1 + exp(βn − δi)) +
I∑

i

δi

N∑

n

Xn,i

−
N∑

n

βn

I∑

i

Xn,i +
λ

2
(βT β + δT δ) +

I∑

i

biδi (6)

with respect to β, δ for λ > 0.

Theorem 1. Algorithm 1 is ε-differentially private.

The proof follows the strategy developed in Chaudhuri et al. [1,2], details
are found in the appendix.

Naive approaches of estimating the regularization parameters by f.e. cross
validation can lead to a loss of privacy, since information is leaked by every
evaluation of the model, and this information accumulates. Chaudhuri et al. [2]
propose two different methods on how to handle this, which we can also apply.
The first one is to use a small publicly available data set that follows roughly the
same distribution for the estimation of λ. The second one is an algorithm which
splits the data set into (m + 1) subsets, calculates the model for m different
guesses of λ on respective subsets, and evaluates the model on the last one.
Then, based on the number zi of errors made by the ith estimate, λi is chosen
with probability

e−εzi/2

∑m
j=1 e−εzj/2

. (7)

For our model, we split the data into subsets of students. For the m different
estimates of δ, we first compute the β values for the last subset and the corre-
sponding probabilities. We then compare the rounded probabilities to the actual
0 or 1 entries in the (m + 1)st subset in the data.
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4 Experiments

Experiments were run for simulated data, real data from Vahdat et al. [9], as
well as a data set from a course at the Technical University of Denmark.

The first experiment is run on simulated data and compares the results of
calculating both β and δ globally to re-estimating β.

The next experiments compare the performance of the two methods for intro-
ducing privacy, the objective perturbation and sufficient statistics. We use corre-
lation coefficients between the estimated probabilities and the true probabilities
(i.e., the ones used to simulate the data) resp. the non-private estimates with
95% confidence intervals. Further, we show test misclassification rates (how well
do we predict if a student passes a test) on a new data set drawn from the same
distribution as the training data. Experiments were run for the two real data
sets. The first one had to be modified to fit the Rasch model, so the answers
were rounded to 1 or 0 depending on whether half of the points for a question
were scored. The DTU data set are the results of a multiple choice test, so the
original data can be used. For the real data sets, we use bootstrapping with 1000
samples to calculate confidence intervals.

We used MATLAB’s fminunc function for minimizing the objective function
in all experiments - with the following settings:

options = optimoptions(’fminunc’,’Algorithm’,’quasi-newton’,
’off’,’SpecifyObjectiveGradient’,true,’MaxIter’,10^5,
’MaxFunEvals’,10^5,’TolX’,10^-5);

The experiments on simulated data were run with 50 repetitions, used a
regularization parameter of 0.01, and privacy budgets of 1, 5 and 10. The amount
of students (N) vary from 40 to 200 in steps of 40 and amount of questions (I) is
fixed to 20. The parameters βn and δi were drawn from normal distributions with
mean 0, and standard deviation 1 and 2, respectively. The Rasch probabilities
were then calculated with the given βn and δi and used to simulate a data set
by drawing from a Bernoulli distribution with the given probabilities.

The M. Vahdat et al. data set has 62 students and 16 questions. The DTU
data set has 212 students and 27 questions.

In pilot experiments we found that fine-tuning of the regularization parame-
ter λ was not essential. So for simplicity reasons we use a common regularization
parameter in all experiments.

4.1 Results

To test the impact of introducing differential privacy to the Rasch model, we ran
several experiments. In the first one we test the retraining of β in the non-private
setting, to show the students can calculate their own abilities from a given,
private δ. The second experiment show the performance of the two methods
on simulated data, while the third and fourth show the performance on the M.
Vahdat real data and DTU data, respectively.
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Experiment 1: Global Vs. Re-estimated Rasch Parameters. In Fig. 2
we compare the Rasch model with global parameter estimation with the results
obtained by re-estimating the student abilities. We plot correlation coefficients
with 95% confidence intervals between the probabilities, also with respect to the
true model parameters, as well as misclassification rates on a new data set drawn
from the same distribution as the train data.
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Fig. 2. The plots show: (a) Correlation coefficient for non-private global and re-
estimation method compared to the true Rasch model. (b) Misclassification for non-
private global and retrain estimation method compared to the true Rasch model.

From the correlation coefficients between the estimated probabilities and the
ground truth probabilities used to simulate the data, we can see that there is
practically no difference in accuracy between re-estimation and global estima-
tion. From now on, we will only consider the re-estimation method, since this is
the one defined by our workflow.

Experiment 2: Differential Privacy on Simulated Data. In Fig. 3 we show
a comparison of the objective perturbation and sufficient statistics method with
three different values of epsilon: 1, 5 and 10. We compare their performance
by calculating the correlation coefficients between the private estimation to the
non-private resp. true estimation. Again, we show 95% confidence intervals.

In Fig. 4, we show the missclassification rates on a simulated data set of the
same distribution as the training set.

We make several observations. First, the objective perturbation performs
better in general. This is due to the smaller amount of noise added to the objec-
tive perturbation, as mentioned in Sect. 3. Next, we see that for lower epsilon
values, i.e. higher privacy, the model generally performs worse, but converges
with larger class size. This is what we would expect and consistent with what is
broadly observed in applications of differential privacy.
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Fig. 3. Correlation coefficient of objective perturbation and sufficient statistics meth-
ods with ε = (1, 5 and 10) to: (a) the non-Private estimates. (b) the true model.
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Fig. 4. Misclassification rates of objective perturbation and sufficient statistics method
with ε = (1, 5 and 10): (a) objective perturbation estimates. (b) sufficient statistics
estimates.

Experiment 3 and 4: Differential Privacy on Real Data. Experiment 2
illustrated the impact of privacy so for experiments 3 and 4, the privacy budget
was fixed to ε = 5 with changing data sizes. In experiment 3 we use the data set
from Vahdat et al. [9]. Experiment 4 is run on the DTU data set.

Figure 5 shows the objective perturbation and sufficient statistics perfor-
mance on real data with ε = 5. The misclassification rate here is calculated
on the original data set (so corresponds to a train, not a test error).

In experiment 3, Fig. 5 (a) and (b), we show that the impact of introducing
privacy on real data sets is limited, even in relatively small data sets. For both
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Fig. 5. Objective perturbation and sufficient statistics methods on real data: (a) Cor-
relation coefficients on Vahdat et al.’s data [9]. (b) misclassification on Vahdat et al.’s
data [9]. (c) Correlation coefficients on DTU data. (d) misclassification on DTU data.

the Vahdat et al. data and the DTU data we find useful correlation between the
probabilities of passing the test as inferred in non-private and private models
(ε = 5).

In experiment 4, Fig. 5 (c) and (d), our results are comparable to those on
the simulated data. In general, we see that the objective perturbation method
performs better than the sufficient statistics method.

In Fig. 6, we illustrate the impact of data set size by showing comparisons of
the probability estimates of the non-private model to the two private methods
on the data set from Vahdat et al. [9], again with fixed ε = 5.

We see how the estimates are very noisy for small data set sizes, but correlate
strongly with the non private for a data set size of 62. Again, the objective
perturbation yields more accurate results.
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Fig. 6. Rasch estimates of objective perturbation and sufficient statistics methods on
Vahdat et al.’s data [9]: (a) nStudent = 21. (b) nStudent = 42. (c) nStudent = 62

5 Conclusion

We have demonstrated viability of the proposed workflow for more detailed, yet
differentially private, feedback for students. We proved analytically that objec-
tive perturbation for this model satisfies differential privacy and give the min-
imum noise level necessary. Our experiments based on simulated data suggest
that the workflow provides estimates of similar quality as the non-private for
medium sized classes and industry standard privacy budgets1. These findings
were confirmed in two real data sets. As expected, the objective perturbation
mechanism performs better than the sufficient statistic method as less noise is
added.

1 See e.g., https://www.wired.com/story/apple-differential-privacy-shortcomings/.

https://www.wired.com/story/apple-differential-privacy-shortcomings/
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Appendix

Proof (of Theorem 1). Since the objective function is differentiable everywhere
and a minimizing pair (β∗, δ∗) satisfies ∇F (β∗, δ∗) = 0, for every output (β∗, δ∗)
there exists exactly one b which maps the input to the output. On the other
hand, since the objective function (6) for λ > 0 is strongly convex (which can be
seen by computing the Hessian matrix H and realizing that H − λI is positive
semidefinite), for any fixed b and X, there is exactly one pair β∗, δ∗ which
minimizes the function. As such there is a bijection between (β∗, δ∗) and b.

Now consider two data sets X and X̃ that differ in exactly one student
(w.l.o.g., the last one). For β∗, δ∗ minimizing (6) for both X and X̃ denote the
corresponding noise vectors b and b̃. By the transformation property of proba-
bility density functions, we get

P (δ∗, β∗|X)
P (δ∗, β∗|X̃)

=
h(b)

∣∣∣det
(
J(β∗,δ∗,X̃)(b̃)

)∣∣∣

h(b̃)
∣∣det

(
J(β∗,δ∗,X)(b)

)∣∣ , (8)

where J(β∗,δ∗,X)(b) denotes the Jacobian matrix of b as a function of (β∗, δ∗),
given input set X.

We get bi as a function of (β∗, δ∗) by setting the gradient of the objective
to zero:

bi =
N∑

n=1

eβ∗
n

eβ∗
n + eδ∗

i
−

N∑

n=1

Xni − λδ∗
i . (9)

Since the sum over X will disappear in any derivative for δ∗
i and β∗

n, the Jacobian
matrices in (8) are identical and the determinants cancel.

Furthermore, since Xni = X̃ni for all i = 1, . . . , I and all n = 1, . . . , (N − 1),
equation (9) also gives

XN + b = X̃N + b̃.

By the reverse triangle inequality we get
∣∣∣‖b‖ − ‖b̃‖

∣∣∣ ≤ ‖b − b̃‖ = ‖XN − X̃N‖ ≤
√

I

and thus

P (δ∗, β∗|X)
P (δ∗, β∗|X̃)

=
h(b)
h(b̃)

= e
− ε√

I
(‖b‖−‖b̃‖) ≤ eε (10)

��
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