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Abstract. Self-exciting temporal point processes are used to model a
variety of financial event data including order flows, trades, and news. In
this work, we take a Bayesian approach to inference and model compari-
son in self-exciting processes. We discuss strategies to compute marginal
likelihood estimates for the univariate Hawkes process, and describe a
Bayesian model comparison scheme. We demonstrate on currency, cryp-
tocurrency and equity limit order book data that the test captures exci-
tatory dynamics.

1 Introduction

Many real-world data mining applications, including those in finance, entail mod-
eling event occurrences in a continuous time setting. Examples of such data
abound in finance; including order flows [3], trades [1], news [12], price jumps,
volatility spikes, etc. Temporal point processes, statistical models of points scat-
tered along the real line, are often the primary models used to address these
data sets.

The Poisson process (PP) is one such statistical model that assumes indepen-
dence among occurrences. Points are assumed to occur without any interaction,
sometimes described as completely randomly [6]. PPs have been used in finance
for modeling discrete event systems, e.g. limit orders [3]. While PPs lead to
convenient mathematics for computing many quantities of interest analytically,
they fail our simple intuition that financial events are seldom independent of one
another, i.e. that they excite each other.

Self-exciting point processes, specifically Hawkes processes (HP) [7], are
recently growing more common in quantitative finance [2] as well as machine
learning literatures [8,9]. First explored in the backdrop of seismology, HPs
assume causal, linear non-negative excitation behavior among occurrences. This
is why they have been considered especially suited to modeling financial discrete
events.

Typically, HPs are applied towards prediction tasks. Maximum likelihood
estimates of model parameters are fit to an observation, a collection of occurrence
timestamps, that are assumed to arise from the process. Model validation or
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selection is then performed through predictive likelihood, or some other cross-
validation metric, used to determine how good the fit is on a held out sample.
Here, instead, we present a method of model selection (or equivalently, hypothesis
testing) for self-exciting point process models. We take a Bayesian approach, and
describe approximate inference and marginal likelihood estimation schemes. We
present preliminary experiments on high frequency currency, cryptocurrency and
equity limit order book data. Among a family of Bayesian inference methods,
we posit that Laplace approximation to model evidence is best suited to the
problem at hand.

In Sect. 2 we first give a brief overview of self-exciting processes and Bayesian
model selection before describing our inference scheme. In Sect. 3, we present a
set of preliminary findings on currency price, equity order book, and crypto-
currency event sets, before concluding in Sect. 4.

2 Model

2.1 Hawkes Process

Let {N(t)}+cr, denote a counting process, a jump process where jump sizes are
+1 and N(0) = 0. Furthermore, we will use the overloaded notation N(a,b] to
refer to the number of jumps (or equivalently, points) in the interval (a,b] — also
a random variable. In correspondence to a temporal point process, we think of
N(t) as the number of points —event occurrences such as orders or transactions—
until time .

Homogeneous Poisson processes are characterized by complete independence
and stationarity assumptions. We have that N(a, ] and N(c,d] are independent
random variables given that (a, b] and (c, d] are disjoint intervals on the real line.
Furthermore, by stationarity we have that (N(a,b]) = (N(a + 7,b+ 7]) for all
7, where we let (.) denote the expectation operator. However, it is these two
assumptions that limit a realistic modeling of sequences of events that might as
well have influenced each other.

Working with general classes of point processes where point occurrences are
interdependent is difficult — both theoretically and computationally [6]. One
alternative that leads to both mathematical and computational convenience is
a class of temporal point processes (or, equivalently, counting processes), deter-
mined by a conditional intensity function [6]. Concretely, let A* denote the con-
ditional intensity function of a self-exciting point process', defined by

N (t) & %iﬁ)u?_l(N(tﬂf + 6] Hy).

Here we use H; to denote the history of events up to time #>. Note that setting
A*(t) = v(t), a deterministic measurable function of ¢, would simply yield a
(nonhomogeneous) Poisson process.

! We follow the notation \* of [6], where the superscript * serves as a reminder that
the intensity function is dependent on the history up to time ¢, H;.

2 Formally, H; can be seen as the natural filtration, an increasing sequence of o-
algebras, with respect to which we define the conditional expectation operator.



Testing for Self-excitation in Financial Events: A Bayesian Approach 97

HPs arise as one of the simplest examples of point processes defined through a
conditional intensity [4,6]. They model linear self-excitation behavior, where the
instantaneous probability of an event occurrence is given by a linear combination
of the effects of past events. A (univariate) HP is a point process determined by
the conditional intensity function [6,7].

N () =p+ ) plt—t)). (1)

Here 1 > 0 is the constant background (exogenous) intensity function. ¢ : Ry —
R, is the triggering kernel, an often monotonically decreasing function that
governs self-excitation.
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Fig. 1. Intensity function of a Hawkes process with exponential delay density

Wewill be concerned with the case p(x) = af exp(—6z), wherea € [0,1),60 > 0.
Here since [ 0 exp(—6z)d§ = 1, we can interpret the triggering kernel in terms
of its parameters. « governs the infectivity or the average number of new events
that are triggered by an event. The remaining part is the exponential density for
the length of the delay between events triggering each other. Note that oo < 1 is
required for stationarity.

One can think of the intensity as a stochastic process itself, which is excited
every time a jump occurs stochastically on the underlying process N (t). That is,
a jump in N (t) leads to a jump of size @ in A\*. This effect then decays according
to a schedule determined by the decay factor in ¢, which in the case above,
was taken as an ezponential decay proportional to exp(—6#At). We illustrate this
effect in Fig. 1.

We refer the reader to the review by Bacry et al. [2] for further details on
HP and their varied applications in quantitative finance.

Finally, let us note that for any conditional intensity point process the like-
lihood of finitely many points IT = {t;}¥ | where 0 < t; < --- <ty < T on a
bounded interval (0,7 is given by

T N
p(IT|\*) = exp (/O A*(s)ds) | IRXCE

i
where the conditional intensity function A*(x) uniquely determines the process.

For Poisson processes, granted that the compensator — fOT A(s)ds can be com-
puted, the evaluation of the likelihood is trivial. This is not the case in general,
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however. Note that the computation of the likelihood for a general HP defined
as in (1) would take time O(N?), as each intensity evaluation takes time linear
in the number of events. This crucial aspect prohibits the use of likelihood-based
inference, including many Bayesian methods, in general. In the exponential ker-
nel HP case, however, both the log likelihood and its gradient can be computed
in linear time owing to the memoryless property. In the sequel, we constrain our
attention to HP parameterized as such.

2.2 Bayesian Model Comparison

As mentioned previously, point processes are used mainly as models of discrete
events occurring asynchronously in continuous time. Compared to discrete-time
models that are often used in econometrics or time series forecasting, the meth-
ods of comparing and selecting models are less obvious.

Although HPs have been explored widely in finance, existing works often use
cross-validation — basing model comparison on predictive likelihood, or other
domain-driven measures of error on held out data. On the other hand, there is
earlier work on frequentist hypothesis testing of HP vs PP [5]. In this paper, we
present work in progress regarding a Bayesian approach — bringing the advan-
tages (and potential pitfalls) of encoding prior assumptions on model parameters
and deriving intuitive tests of model validity.

In Bayesian model comparison, one judges models through marginal (inte-
grated) likelihoods, using the same calculus of probability that one judges param-
eter configurations of a fixed model. Let p(II|@) denote the data likelihood, and
p(O@) a prior distribution under a certain model. Our aim is to compute the
marginal likelihood

p(IT) = / p(IT10)p(6)de,

where we let © denote the vector of all model parameters. Intuitively, this quan-
tity can be read as (p(I1|0)) (o), i-e. the expected likelihood that a given model
will assign to data I, as parameters are drawn from the prior p(©). Note that
this quantity comes with “Occam’s razor” included, i.e. high-dimensional models
with diffuse priors are automatically penalized. One can then use the marginal
likelihoods of two different models to compare them.

Let p1,po denote marginal likelihoods under two different models. The ratio

p1(II)
po(IT)

is known as the Bayes factor. Bayesian hypothesis tests are performed by cal-
culating the marginal likelihood under the null (py), as well as the alternative
(p1) hypotheses, and computing BF. BF > 10 is taken as strong evidence that
the first model (p;) better explains the observations. Similarly, many models (or
prior configurations) can be compared on the same footing.

BF =

(2)
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2.3 Proposed Method

Here we propose a simple hypothesis test for “self-excitation” behavior in finan-
cial events. We calculate the Bayes factor (2) by taking a homogeneous PP as the
null hypothesis (pg), and an exponential-decay HP as given in (1) as the alter-
native (p1). In doing so, we explore methods of marginal likelihood estimation
for HP, which also paves the way to comparing HP models.

We equip both models (pg,p1) with appropriate prior distributions. In the
former, we choose a Gamma distribution for the constant intensity parameter.
The Gamma distribution is conjugate to the PP likelihood, making marginal
likelihood computation analytically tractable. For HP, parameters u,«,f are
given Gamma, Beta and Gamma priors respectively.

Marginal likelihood for HPs is intractable under any choice of prior, and we
must resort to an approximation. Yet, this approximation is still made difficult
by computational challenges related to the likelihood, outlined above. For exam-
ple, one sampling-based alternative for marginal likelihood estimation, annealed
importance sampling [11], requires a large number of likelihood computations
before a single weighted sample can be drawn. This prohibits a realistic appli-
cation of this method for HPs with large observed samples.

However, especially in the high-frequency context, we can invoke another
approximation method. Financial continuous time data sets, unlike earthquakes,
are characterized by large sample sizes. We find that this leads to peaked, uni-
modal posteriors, with which we can turn to Laplace approximation to the
marginal likelihood [10].

We approximate the posterior with a multivariate Gaussian distribution cen-
tered around the posterior mode, ©* = argmaxp(©|II). Given the posterior
potential p(©) = p(O|II)p(O), we approximate p(II) = [ dOp(O) via

1
Inp(Il) =~ Inp(O*) + gln%’ - §ln\H|,

where H = V2 — ¢(0*) is the Hessian of —¢ evaluated at the mode.

This method reduces marginal likelihood estimation to a series of simple
steps. First, maximum a posteriori (MAP) estimates of HP are obtained. This
can be achieved via expectation maximization, as well as gradient-based meth-
ods in the simple case of univariate HP. The Hessian H can be approximated
numerically or computed exactly. Software for estimating marginal likelihood,
as well as other tasks such as posterior inference under univariate Bayesian HP,
is made available online®.

3 Experiments

Our experiments cover a range of financial event sets. FX are high frequency
(millisecond range) tick events in an interbank currency exchange, previously

3 http://www.github.com/canerturkmen/hawkeslib, and on the Python Package
Index (PyPI) as hawkeslib.
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Fig. 2. Data samples from the three data sets. x-axis denotes time of occurrence, y-axis
is random noise for better visibility

Table 1. Results of experiments on financial data sets. N denotes the number of occur-
rences in the data set. BF is the computed Bayes factor. Bayesian credible intervals at
95% are given for a, 6

Data Set | Asset N BF |« 0
Lower | Upper | Lower | Upper
FX GBPUSD 1000 | >10%|0.62 |0.75 | 5.46 |8.06

EURUSD |1000|>10%0.53 |0.64 |6.26 |8.37
USDJPY 1000 | >10% | 0.61 |0.73 |5.15 |7.12

Crypto |USDT-ETH |5684|0.11 |0.15 [0.38 |0 0.02
BTC-XRP |5710{0.04 [0.08 |0.45 |0 0.02
BTC-ETH |5499|3.69 [0.12 |0.34 |0 0.02

LOB GARAN 1000| >10% 0.88 [0.99 |8.8 18

investigated using HP [13]. We model three large-volume currency pairs selected
at random. Crypto are price increase events on three large-cap cryptocurrencies
on the cryptocurrency exchange Bittrex sampled at five minute (low) frequency.
Finally LOB are limit order arrivals in a large-cap bank stock in the Turkish
equity exchange, Borsa Istanbul, sampled at very high frequency (nanosecond
range). Samples of each data set are given in Fig.2. In FX and LOB , we limit
event sets to 1000 events, roughly to 10 min of trading. Observe that in both data
sets, the data cluster around certain points in time. This effect is less pronounced
in Crypto .

We report the results of our tests, where we calculate the Bayes factor as
described in Sect.2.3. We further present 95% Bayesian credible intervals for
the triggering kernel parameters, where we use simple random walk Metropolis
(RWM) [10] algorithm to draw from the posterior.

We present the results in Table1. The test accurately captures that low-
frequency price jumps do not present sufficient evidence in favor of self-
excitation. In FX and LOB , however, we find overwhelming evidence that HP
outperforms PP. Note however that, if one were to register only large return
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jumps as events, HPs could still fit the data at lower frequencies. This is not
surprising, its analogue in the discrete-time setting would be known as volatility
clustering.

There are, however, two issues we must address. First, Bayesian analysis is
well known to be sensitive to choice of priors. In our analyses, we find that large
data sets easily mitigate this effect. In Fig. 2, we change the scale hyperparameter
of the prior for 6, the delay distribution. We find that, except for unrealistic
choices of priors which set the average delay to less than 0.01 ms, the conclusion
is largely unaffected. Varying other hyperparameters lead to similar conclusions.

Finally, let us note that this paper and many others in the field assume
constant background intensity p. The test in this paper also assumes a homoge-
neous PP as the null hypothesis. However, the exogenous process that governs
financial events is often not stationary. For example, financial events follow intra-
day, weekly and yearly cycles. Our test, and many other investigations in HP,
are prone to capturing this effect and explaining it away using the endogenous
component of HP. We test this effect using a toy data set drawn from a non-
homogeneous PP with intensity A(¢) « exp(sint) (see, e.g. Figure4). On this
data, our test easily passes (rejects PP), although the nonstationarity is purely
exogenous. In our experiments, we mitigate the potential effect of periodicity by
sampling short time intervals (Fig. 3).

500

log BF

=500

Fig. 3. Logarithm of the Bayes factor as the scale hyperparameter of p(#) is changed,;
for EURUSD in the FX data set.

BF >10°
BCls (95%): @ €[0.95, 1)
6€[0.03, 0.05]
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Fig. 4. A draw from a nonhomogeneous Poisson process with periodic intensity
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4 Conclusion

We combined techniques from Bayesian machine learning and evolutionary point
processes for modeling high-frequency financial data. We cast HP to a Bayesian
setting, and discussed the computation of a Bayesian model comparison scheme
for testing “self-excitation” behavior in financial events as well as posterior infer-
ence. Early experiments confirm basic intuition regarding high-frequency finan-
cial events.

Our method can be used to capture self-excitation effects in financial discrete
event data, much in the same way conditional heteroskedasticity models capture
volatility clustering. However, the test assumes that background intensities are
stationary, and can lead to pitfalls in financial analysis. This issue constitutes
the next step to this study.
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