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Abstract. We propose to represent a return model and risk model in a
unified manner with deep learning, which is a representative model that
can express a nonlinear relationship. Although deep learning performs
quite well, it has significant disadvantages such as a lack of transparency
and limitations to the interpretability of the prediction. This is prone
to practical problems in terms of accountability. Thus, we construct a
multifactor model by using interpretable deep learning. We implement
deep learning as a return model to predict stock returns with various
factors. Then, we present the application of layer-wise relevance propa-
gation (LRP) to decompose attributes of the predicted return as a risk
model. By applying LRP to an individual stock or a portfolio basis,
we can determine which factor contributes to prediction. We call this
model a deep factor model. We then perform an empirical analysis on the
Japanese stock market and show that our deep factor model has better
predictive capability than the traditional linear model or other machine
learning methods. In addition, we illustrate which factor contributes to
prediction.
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1 Introduction

An essential tool of quantitative portfolio management is the multifactor model.
The model explains the stock returns through multiple factors. A general multi-
factor model in the academic finance field is sometimes used synonymously with
the arbitrage pricing theory (APT) advocated by Ross [24]. The APT multifac-
tor model includes a method of providing macroeconomic indicators a priori to
explain stock returns and a method of extracting factors by factor analysis from
past stock returns.

However, in practice, the Fama-French approach and the BARRA approach
based on ICAPM [20] are widely used. The Fama-French or Barra multifactor
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models correspond to a method of finding stock returns using the attributes of
individual companies such as investment valuation ratios represented by PER
and PBR.

The Fama-French approach was introduced for the first time by Fama and
French [9]. The Barra approach was introduced by Rosenberg [23] and was
extended by Grinold and Kahn [13]. It is calculated through cross-section regres-
sion analysis since it assumes that stock returns are explained by common fac-
tors.

In addition, there are two uses of the multifactor model. It can be employed
both to enhance returns and to control risk. In the first case, if one is able to
predict the likely future value of a factor, a higher return can be achieved by
constructing a portfolio that tilts toward “good” factors and away from “bad”
ones. In this situation, the multifactor model is called a return model or an alpha
model.

On the other hand, by capturing the major sources of correlation among stock
returns, one can construct a well-balanced portfolio that diversifies specific risk
away. This is called a risk model. There are cases where these models are confused
when being discussed in the academic finance field.

For both the return model and the risk model, the relationship between the
stock returns and the factors is linear in the traditional multifactor model men-
tioned above. By contrast, linear multifactor models have proven to be very
useful tools for portfolio analysis and investment management. The assump-
tion of a linear relationship is quite restrictive. Considering the complexity of
the financial markets, it is more appropriate to assume a nonlinear relationship
between the stock returns and the factors.

Therefore, in this paper, we propose to represent a return model and risk
model in a unified manner with deep learning, which is a representative model
that can express a nonlinear relationship. Deep learning is a state-of-the-art
method for solving various challenging machine learning problems [11], e.g.,
image classification, natural language processing, or human action recognition.
Although deep learning performs quite well, it has a significant disadvantage: a
lack of transparency and limitations to the interpretability of the solution. This
is prone to practical problems in terms of accountability. Because institutional
investors have fiduciary duty and accountability for their customers, it is difficult
for them to use black-box type machine learning technique such as deep learning.
Thus, we construct a multifactor model by using interpretable deep learning.

We implement deep learning to predict stock returns with various factors as
a return model. Then, we present the application of layer-wise relevance propa-
gation (LRP [3]) to decompose attributes of the predicted return as a risk model.
LRP is an inverse method that calculates the contribution of inputs to the pre-
diction made by deep learning. LRP was originally a method for computing
scores for image pixels and image regions to denote the impact of a particular
image region on the prediction of a classifier for a particular test image. By
applying LRP to an individual stock or a quantile portfolio, we can determine
which factor contributes to prediction. We call the model a deep factor model.
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We then perform an empirical analysis on the Japanese stock market and
show that our deep factor model has better predictive power than the traditional
linear model or other machine learning methods. In addition, we illustrate which
factor contributes to prediction.

2 Related Works

Stock return predictability is one of the most important issues for investors.
Hundreds of papers and factors have attempted to explain the cross section of
expected returns [14,19,25]. Academic research has uncovered a large number
of such factors, 314 according to Harvey et al. [14], with the majority being
identified during the last 15 years.

The most popular factors of today (Value, Size, and Momentum) have been
studied for decades as part of the academic asset pricing literature and prac-
titioner risk factor modeling research. One of the best-known efforts in this
field came from Fama and French in the early 1990s. Fama and French [9] put
forward a model explaining US equity market returns with three factors: the
market (based on the traditional CAPM model), the size factor (large vs. small
capitalization stocks), and the value factor (low vs. high book to market). The
Fama-French three-factor model, which today includes Carhart’s momentum fac-
tor [6], has become a canon within the finance literature. More recently, the low
risk [4] and quality factors [21] have become increasingly well accepted in the
academic literature. In total, five factors are studied the most widely [15].

Conversely, the investors themselves must decide how to process and predict
returns, including the selection and weighting of such factors. One way to make
investment decisions is to rely upon the use of machine learning. This is a super-
vised learning approach that uses multiple factors to explain stock returns as
input values and future stock returns as output values. Many studies on stock
return predictability using machine learning have been reported. Cavalcante et
al. [7] presented a review of the application of several machine learning methods
in financial applications. In their survey, most of these were forecasts of stock
market returns; however, forecasts of individual stock returns using the neural
networks dealt with in this paper were also conducted.

In addition, Levin [18] discussed the use of multilayer feed forward neural
networks for predicting a stock return with the framework of the multifactor
model. To demonstrate the effectiveness of the approach, a hedged portfolio
consisting of equally capitalized long and short positions was constructed, and
its historical returns were benchmarked against T-bill returns and the S&P500
index. Levin achieved persistent returns with very favorable risk characteristics.

Abe and Nakayama [2] extended this model to deep learning and investigated
the performance of the method in the Japanese stock market. They showed that
deep neural networks generally outperform shallow neural networks, and the best
networks also outperform representative machine learning models. These results
indicate that deep learning has promise as a skillful machine learning method to
predict stock returns in the cross section.
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However, these related works are only for use as a return model, and the
problem is that the viewpoint as a risk model is lacking.

3 Methodology – Deep Factor Model

3.1 Deep Learning

The fundamental machine learning problem is to find a predictor f(x) of an
output Y given an input X. As a form of machine learning, deep learning trains
a model on data to make predictions, but it is distinguished by passing learned
features of data through different layers of abstraction. Raw data is entered at
the bottom level, and the desired output is produced at the top level, which is
the result of learning through many levels of transformed data. Deep learning is
hierarchical in the sense that in every layer, the algorithm extracts features into
factors, and a deeper level’s factors become the next level’s features.

A deep learning architecture can be described as follows (1). We use l ∈
1, . . . , L to index the layers from 1 to L, which are called hidden layers. The
number of layers L represents the depth of our architecture. We let z(l) denote
the l-th layer, and so X = z(0). The final output is the response Y , which can
be numeric or categorical.

The explicit structure of a deep prediction rule is then

z(1) = f (1)(W (0)X + b(0))
z(2) = f (2)(W (1)z(1) + b(1))

... (1)
z(L−1) = f (L−1)(W (L−2)z(L−2) + b(L−2))

Y = f (L)(W (L−1)z(L−1) + b(L−1))

Here, W (l) are weight matrices, and b(l) are the threshold or activation levels.
z(l) are hidden features that the algorithm extracts. Designing a good predictor
depends crucially on the choice of univariate activation functions f (l). Commonly
used activation functions are sigmoidal (e.g., 1

(1+exp(−x)) , cosh(x), or tanh(x))
or rectified linear units (ReLU) max{x, 0}.

3.2 Layer-Wise Relevance Propagation

LRP is an inverse method that calculates the contribution of the prediction made
by the network. The overall idea of decomposition is explained in [3]. Here, we
briefly reiterate some basic concepts of LRP with a toy example (Fig. 1). Given
input data x, a predicted value f(x) is returned by the model denoted as function
f . Suppose the network has L layers, each of which is treated as a vector with
dimensionality V (l), where l represents the index of layers. Then, according to
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the conservation principle, LRP aims to find a relevance score Rd for each vector
element in layer l such that the following equation holds:

f(x) =
∑

d∈V (L)

R
(L)
d = · · · =

∑

d∈V (l)

R
(l)
d = · · · =

∑

d∈V (1)

R
(1)
d (2)

As we can see in the above formula (2), LRP uses the prediction score as the
sum of relevance scores for the last layer of the network, and maintains this sum
throughout all layers.

Figure 1 shows a simple network with six neurons. wij are weights, zi are
outputs from activation, and R

(l)
i are relevance scores to be calculated. Then,

we have the following equation:

f(x) = R
(3)
6

= R
(2)
5 + R

(2)
4 (3)

= R
(1)
3 + R

(1)
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(1)
1

Furthermore, the conservation principle also guarantees that the inflow of
relevance scores to one neuron equals the outflow of relevance scores from the
same neuron. z

(l,l+1)
ij is the message sent from neuron j at layer l+1 to neuron i

at layer l. In addition, R
(l)
d is computed using network weights according to the

equation below:

R
(l)
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∑

j

z
(l,l+1)
ij

∑
k z

(l,l+1)
kj

R
(l+1)
j , z

(l,l+1)
ij = wijz

(l)
i (4)

Therefore, LRP is a technique for determining which features in a particular
input vector contribute most strongly to a neural network’s output.

3.3 Deep Factor Model

In this paper, we propose to represent a return model and risk model in a unified
manner with deep learning, which is a representative model that can express a
nonlinear relationship. We call the model a deep factor model. First, we formulate
a nonlinear multifactor model with deep learning as a return model.

The traditional fundamental multifactor model assumes that the stock return
ri can be described by a linear model:

ri = αi + Xi1F1 + · · · + XiNFN + εi (5)

where Fi are a set of factor values for stock i, Xin denotes the exposure to
factor n, αi is an intercept term that is assumed to be equal to a risk-free rate
of return under the APT framework, and εi is a random term with mean zero
and is assumed to be uncorrelated across other stock returns. Usually, the factor
exposure Xin is defined by the linearity of several descriptors.
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Fig. 1. LRP with toy example

While linear multifactor factor models have proven to be very effective tools
for portfolio analysis and investment management, the assumption of a linear
relationship is quite restrictive. Specifically, the use of linear models assumes
that each factor affects the return independently. Hence, they ignore the possi-
ble interaction between different factors. Furthermore, with a linear model, the
expected return of a security can grow without bound as its exposure to a factor
increases.

Considering the complexity of the financial markets, it is more appropriate
to assume a nonlinear relationship between the stock returns and the factors.
Generalizing (5), maintaining the basic premise that the state of the world can
be described by a vector of factor values and that the expected stock return is
determined through its coordinates in this factor world leads to the nonlinear
model:

ri = f̃(Xi1, . . . , XiN , F1, . . . , FN ) + εi (6)

where f̃ is a nonlinear function.
The prediction task for the nonlinear model (6) is substantially more com-

plex than that in the linear case since it requires both the estimation of future
factor values as well as a determination of the unknown function f̃ . As in a
previous study [18], the task can be somewhat simplified if factor estimates are
replaced with their historical means F̄n. Since the factor values are no longer
variables, they are constants. For the nonlinear model (6), the expression can be
transformed as follows:

ri = f̃(Xi1, . . . , XiN , F̄1, . . . , F̄N ) + εi

= f(Xi1, . . . , XiN ) + εi (7)
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where Xin is now the security’s factor exposure at the beginning of the period
over which we wish to predict. To estimate the unknown function f , a family
of models needs to be selected, from which a model is to be identified. In the
following, we propose modeling the relationship between factor exposures and
future stock returns using a class of deep learning.

However, deep learning has significant disadvantages such as a lack of trans-
parency and limitations to the interpretability of the solution. This is prone to
practical problems in terms of accountability. Then, we present the application
of LRP to decompose attributes of the predicted return as a risk model. By
applying LRP to an individual stock or a quantile portfolio, we can determine
which factor contributes to prediction. If you want to show the basis of the pre-
diction for a stock return, you can calculate LRP using the inputs and outputs
of the stock. In addition, in order to obtain the basis of prediction for a portfolio,
calculate LRPs of the stocks included in that portfolio and take their average.
Then, by aggregating the factors, you can see which factor contributed to the
prediction. Figure 2 shows an overall diagram of the deep factor model.

4 Experiment on Japanese Stock Markets

4.1 Data

We prepare a dataset for TOPIX index constituents. TOPIX is a well-accepted
stock market index for the Tokyo Stock Exchange (TSE) in Japan, tracking all
domestic companies of the exchange’s First Section. It is calculated and pub-
lished by the TSE. As of March 2016, the index is composed of 1,948 constituents.
The index is also often used as a benchmark for overseas institutional investors
who are investing in Japanese stocks.

We use the 5 factors and 16 factor exposures listed in Table 1. These are used
relatively often in practice and are studied the most widely in academia [15].

In calculating these factors, we acquire necessary data from the Nikkei Port-
folio Master and Bloomberg. Factor exposures are calculated on a monthly basis
(at the end of month) from December 1990 to March 2016 as input data. Stock
returns with dividends are acquired on a monthly basis (at the end of month)
as output data.

4.2 Model

Our problem is to find a predictor f(x) of an output Y , next month’s stock
returns given an input X, various factors. One set of training data is shown in
Table 3. In addition to the proposed deep factor model, we use a linear regression
model as a baseline, and support vector regression (SVR [8]) and random forest
[5] as comparison methods. The deep factor model is implemented with Tensor-
Flow [1], and the comparison methods are implemented with scikit-learn [22].
Table 2 lists the details of each model.

We train all models by using the latest 60 sets of training data from the
past 5 years. The models are updated by sliding one month ahead and carrying
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Fig. 2. Deep factor model

out a monthly forecast. The prediction period is 10 years, from April 2006 to
March 2016 (120 months). This is because we wanted to hold a test period over
10 years including the date of Lehman shock. But, we have to check the impact
of reference period choice on performance for further study. Figure 3 shows the
image of our prediction framework. In order to verify the effectiveness of each
method, we compare the prediction accuracy of these models and the profitability
of the quintile portfolio. We construct a long/short portfolio strategy for a net-
zero investment to buy top stocks and to sell bottom stocks with equal weighting
in quintile portfolios. For the quintile portfolio performance, we calculate the
annualized average return, risk, and Sharpe ratio. In addition, we calculate the
average mean absolute error (MAE) and root mean squared error (RMSE) for
the prediction period as the prediction accuracy.
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Table 1. Factors and factor descriptors

Factor Descriptor Formula

Risk 60VOL Standard deviation of stock returns in the past 60 months

BETA Regression coefficient of stock returns and market risk premium

SKEW Skewness of stock returns in the past 60 months

Quality ROE Net income/Net Assets

ROA Operating Profit/Total Assets

ACCRUALS Operating Cashflow − Operating Profit

LEVERAGE Total Liabilities/Total Assets

Momentum 12-1MOM Stock returns in the past 12 months except for past month

1MOM Stock returns in the past month

60MOM Stock returns in the past 60 months

Value PSR Sales/Market Value

PER Net Income/Market Value

PBR Net Assets/Market Value

PCFR Operating Cashflow/Market Value

Size CAP log(Market Value)

ILLIQ average(Stock Returns/Trading Volume)

Table 2. Details of each method

Model Description

Deep factor model Model 1 The hidden layers are {80-50-10}.
We use the ReLU as the activation function

and Adam [16] for the optimization algorithm

Model 2 The hidden layers are {80-80-50-50-10-10}.
We use the ReLU as the activation function

and Adam [16] for the optimization algorithm

Linear model Linear models is implemented with scikit-learn

with the class “sklearn.linear model.LinearRegression”

All parameters are default values in this class

SVR Support vector regression (SVR) is implemented

with scikit-learn with the class “sklearn.svm.SVR”.

All parameters are default values in this class

Random forest Random Forest is implemented with scikit-learn

with the class “sklearn.ensemble.RandomForestRegressor”.

All parameters are default values in this class
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Table 3. One set of training data for March 2016.

Input: 80 dim Output: 1 dim

Factor descriptors:
16 × 5 dim

Return: 1 dim

February 2016 March 2016

November 2015

August 2015

May 2015

February 2015

Fig. 3. Stock prediction framework.

4.3 Results

Table 4 lists the average MAE and RMSE of all years and the annualized return,
volatility, and Sharpe ratio for each method. In the rows of the table, the best
number appears in bold. Deep factor model 1 (shallow) has the best prediction
accuracy in terms of MAE and RMSE as in the previous study [2,18]. On the
other hand, deep factor model 2 (deep) is the most profitable in terms of the
Sharpe Ratio. The shallow model is superior in accuracy, while the deep one is
more profitable. In any case, we find that both models 1 and 2 exceed the baseline
linear model, SVR, and random forest in terms of accuracy and profitability.
These facts imply that the relationship between the stock returns in the financial
market and the factor is nonlinear, rather than linear. In addition, a model that
can capture such a nonlinear relationship is thought to be superior.
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Table 4. Average MAE and RMSE of all years and annualized return, volatility, and
Sharpe ratio for each method.

Deep factor model Linear model SVR Random forest

Model 1 Model 2

Return [%] 10.81 10.31 8.17 1.46 0.12

Volatility [%] 7.65 6.86 8.20 9.66 5.43

Sharpe ratio 1.41 1.50 1.00 0.15 0.02

MAE 0.0663 0.0669 0.0679 0.1713 0.0728

RMSE 0.0951 0.0953 0.0965 0.1962 0.1024

4.4 Interpretation

Here, we try to interpret the stock of the highest predicted stock return and the
top quintile portfolio based on the factor using deep factor model 2 as of the last
time point of February 2016. In general, the momentum factor is not very effec-
tive, but the value and size factors are effective in the Japanese stock markets.
Nowadays, there is a significant trend in Japan to evaluate companies that will
increase ROE over the long term because of the appearance of the Corporate
Governance Code. In response to this trend, the quality factor including ROE
is gaining attention. But, [17] found that both the RMW and the CMA related
to our quality factor are weakly associated with the cross-sectional variations of
stock returns in long term, which is significantly different from the US evidence.

Figure 4 shows which factor contributed to the prediction in percentages using
LRP. The contributions of each descriptor calculated by LRP are summed for
each factor and are displayed as a percentile.

We observe that the quality and value factors account for more than half of
the contribution to both the stock return and quintile portfolio. The quality fac-
tor and the momentum factor are not effective in the linear multifactor model,
whereas their contribution is remarkably large in the Deep Factor Model. More-
over, the contribution of the size factor is small, and it turns out that there is a
widely profitable opportunity regardless of whether the stock is large or small.
Figure 5 shows that these trends do not change in time series. Therefore, the
Deep Factor Model is stable in terms of interpretability.

Next, we quantitatively verify the risk model by LRP. Table 5 shows the
correlation coefficients between each factor and the predicted return in the top
quintile portfolio. The correlation coefficients are calculated by averaging the cor-
relation coefficients between each descriptor and the predicted return by each
factor. The influence of the value and size factor differs when looking at LRP
and correlation. The value factor has a large contribution to LRP and a small
contribution to the correlation coefficients. The size factor has the opposite con-
tributions. Therefore, without LRP, we could misinterpret the return factors.
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Fig. 4. Interpreting highest predicted return and top quintile portfolio based on factor
using network as of last time point of February 2016

Fig. 5. Interpreting top quintile portfolio based on factor using network from April
2006 to February 2016

Table 5. Correlation coefficients between each factor and predicted return in top
quintile portfolio.

Risk Quality Momentum Value Size

Spearman 0.14 0.22 0.24 0.08 0.14

Kendall 0.10 0.15 0.17 0.06 0.10
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5 Conclusion

We presented a method by which deep-learning-based models can be used for
stock selection and risk decomposition. In terms of fiduciary duty and account-
ability for institutional investors, risk decomposition is important in practice.

Our conclusions are as follows:

– The deep factor model outperforms the linear model. This implies that the
relationship between the stock returns in the financial market and the factors
is nonlinear, rather than linear. The deep factor model also outperforms other
machine learning methods including SVR and random forest.

– The shallow model is superior in accuracy, while the deep model is more
profitable.

– Using LRP, it is possible to intuitively determine which factor contributed to
prediction.

This study reports the main idea of deep factor model and initial results
using Japanese stock market. We should check the stability of our model by
using various stock market such as country-specific or global market [10,12].

For further study, we would like to expand our deep factor model to a model
that exhibits dynamic temporal behavior for a time sequence such as RNN.
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