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Abstract. Multivariate time series forecasting involves the learning of
historical multivariate information in order to predict the future val-
ues of several quantities of interests, accounting for interdependencies
among them. In finance, several of this quantities of interests (stock
valuations, return, volatility) have been shown to be mutually influenc-
ing each other, making the prediction of such quantities a difficult task,
especially while dealing with an high number of variables and multiple
horizons in the future. Here we propose a machine learning based frame-
work, the DFML, based on the Dynamic Factor Model, to first perform
a dimensionality reduction and then perform a multiple step ahead fore-
casting of a reduced number of components. Finally, the components are
transformed again into an high dimensional space, providing the desired
forecast. Our results, comparing the DFML with several state of the art
techniques from different domanins (PLS, RNN, LSTM, DFM), on both
traditional stock markets and cryptocurrencies market and for different
families of volatility proxies show that the DFML outperforms the con-
current methods, especially for longer horizons. We conclude by explain-
ing how we wish to further improve the performances of the framework,
both in terms of accuracy and computational efficiency.
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1 Introduction

The problem of time series forecasting, in its simplest form, deals with the pre-
diction of a given quantity of interest in the future, given its historical values.
Moreover, one could be interested in forecasting the immediate next value in the
future (one-step-ahead forecasting) as well as being concerned with the estima-
tion of a sequence of future values (multi-step-ahead forecasting). In a similar
fashion, the problem might involve a single quantity (univariate forecasting), or
several quantities at once (multivariate forecasting), in order to exploit potential
interrelationships among them. In the context of finance, specific quantities of
interest are: the stock price of a given company over time, its returns or the
intensity of the fluctuations affecting the price (i.e. its volatility), among others.
Specifically, in the case of stock markets, the underlying trend of the market influ-
ences all the stocks that are currently traded. As shown in [18], stock prices of
firms acting on the same market often show similar patterns in the sequel of news
that are important for the entire market. Moreover, analyzing global volatility
transmission, Engle et al. [12] found evidence supporting volatility interdepen-
dence among the world’s major trading areas. For these reasons, while modeling
these time dependent quantities of interest, a multivariate model appears to be
a natural choice to incorporate interdependencies into the forecasting process.

Among all the quantities of interest, in the following, we will focus on the
problem of multivariate volatility forecasting. In this specific case, the quantity
of interest is a latent variable, which cannot be directly observed given the time
series, but only estimated, according to the granularity and the type of the avail-
able data, through different measures, named volatility proxies [27]. According
to the choice of the proxy, several approaches have been proposed to tackle this
multivariate problem. The largest body of the volatility forecasting literature
focus on multivariate extensions of the well known GARCH [2] on traditional
stock market data, for instance, citing some recently published work: [13] and [3].
For a thorough review of the different univariate and multivariate methods, we
refer the interested reader to the latter. Due to the steadily growth of the cryp-
tocurrencies market capitalization [11], coupled with the currencies’ volatility,
GARCH-like models [7], [32] have also been applied for non-traditional markets.
The main problem of these approaches is that traditional multivariate models
often suffers from the “curse of dimensionality”: as the number of dimensions
increase, the number of parameters grows superlinearly in the number of dimen-
sions, making the model estimation heavily computationally intensive, especially
in the case of multiple step ahead forecasts.

In order to profit from the richness of a multivariate model, while maintain-
ing a reasonable computational complexity, we propose to employ the DFML [4],
a multivariate, multistep-ahead machine learning forecasting framework involv-
ing a dimensionality compression process, based on the dynamic factor model
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(DFM) principle [14]. The choice of this generic time series forecasting frame-
work requires the usage of model-independent volatility proxies which will be
discussed in Sect. 3, requiring us to dismiss GARCH as a proxy of volatility, due
to his tight coupling between the proxy and the corresponding forecasting model
to use, as discussed in [8].

At the time of writing, we had been able to find either multivariate techniques
dealing with the forecasting of either cryptocurrencies prices [1,6] or univariate
techniques dealing with the forecasting of volatility either with a one-step ahead
[7,32] or multistep-ahead [10]. Nevertheless, we are not aware of any other work
tackling both the problems of multivariate and multi-step ahead cryptocurren-
cies volatility forecasting, specifically in the case of large dimensionality and a
reduced number of datapoints. Our technique will then be tested on two differ-
ent benchmarks: one concerning cryptocurrencies and a second one, concerning a
traditional regulated stock market (CAC40) being a de facto multivariate exten-
sion of [25].

The rest of the paper is structured as follows: Sect. 2 provides an oveview of
the Dynamic Factor Machine Learner approach. Section 3 introduces the different
tested multivariate models as well as the considered datasets and the formulation
of the relevant forecast quantities. Section 4 concludes the paper with a discussion
of the results and the future research directions.

2 Dynamic Factor Machine Learner

A Dynamic Factor Model (DFM) is a technique for multivariate forecasting
originating in the economic forecasting community [14]. The basic idea of DFM
is that a small number of unobserved series (or factors) can account for the
temporal behavior of a much larger number of variables. If we are able to obtain
accurate estimates of these factors, the forecasting endeavor can be made simpler
by using the estimated dynamic factors for forecasting instead of using all series.
In equations:

Yt+1 = WZt+1 + εt+1 (1)
Zt+1 = AtZt + · · · + At−m+1Zt−m+1 + ηt+1 (2)

where Yt is a multivariate time series vector at time t, Zt is the vector of
unobserved factors of size q (q � n), Ai are q × q coefficient matrices, W is the
matrix (n × q) of dynamic factor loadings and the vectors of disturbances terms
η are assumed to be uncorrelated. As shown in Eq. 2, in the original DFM, the
latent factors follow a VAR time series process. For a detailed review of DFM
models, the interested reader could refer to [28].

Here, we propose to employ a machine learning extension of the DFM (called
DFML - Dynamic Factor Machine Learner). The DFML, first proposed by
Bontempi et al. [4] and further discussed in [9], relies on dimensionality reduction
techniques to extract the factors. Then, the factors are forecast using a nonlinear
model. Finally, the forecasts of the factors are transformed back to the original
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values by inverting the dimensionality reduction process. The basic architecture
of the DFML is depicted in Fig. 1, along with the description of the different
variants. Concerning dimensionality reduction, both linear (PCA) and nonlin-
ear (autoencoder) techniques are employed in the DFML. Linear dimensionality
reduction by PCA transforms the n original time series Y[1], . . . , Y[n] into q
new variables Z[1], . . . , Z[q] (called principal components or factors) such that
the new variables are uncorrelated with each other and account for decreasing
portions of the variance of the original variables. The q principal components are
then expressed as weighted sums of the elements of Y with maximal variance,
where the weights are normalized and constrained to ensure orthogonality:

Z[p] =
n∑

j=1

wjpY[j], p = 1, . . . , q (3)

Given the multivariate time series matrix Y, Z = YW represents the projection
of the series onto the pth principal components and Ŷ = ZWT represent the
reconstruction Ŷ of the values of Y, based on the factors Z. On the other hand,
nonlinear dimensionality reduction is performed through the use of autoencoders.
Autoencoders are neural networks trained to learn identity mapping from inputs
to outputs [31], through a constrained architecture to enforce dimensionality
reduction. As such their input and output layer have the same number of neurons
n as the number of input time series but their hidden layers contain a reduced
number of neurons q. Autoencoders are composed of two stacked multi-layer
networks: an encoder :

Zt = fθ(Yt) (4)

that transforms inputs Yt into some latent (encoded) representation Zt, and a
decoder :

Ŷt = gθ′(Zt) (5)

that reconstructs an approximation Ŷt of the input Yt on the basis of the latent
feature Zt and where the mappings fθ and gθ′ are non-linear. The network is
usually trained using gradient descent techniques such as backpropagation, with
the objective of minimizing the mean-squared error between the input Yt and the
output (its reconstruction Ŷt) [31]. Concerning the forecasting part, the original
DFML paper [4] proposes to forecast each factor independently (given their
orthogonality) using a nonlinear model (lazy learning [5]) and a univariate multi-
step-ahead forecasting strategy. In addition to the basic forecaster, the paper
also proposes an optimized version (DFML′), performing a joint selection of the
hyperparameters (number of factors for the dimensionality reduction, predictor
and multi-step-ahead strategy for the forecaster) using out-of-sample assessment.
Although we consider lazy methods for the forecaster, the modular architecture
of this framework easily allows the replacement of the aforementioned technique
with alternative supervised machine learning approaches (e.g. SVM, RNN).
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Ŷn

Dimensionality reduction Forecast

DFM PCA VAR
DFMLPCA PCA Lazy-learning
DFMLA Autoencoder Lazy-learning

DFML’PCA Optimized PCA Optimized Lazy-learning

Fig. 1. Schema of the DFML architecture with a summary of the different components
as implemented in the different proposed methods.

3 Methodology

3.1 Multivariate Forecasting Methods

Multiple Univariate Techniques - {Naive, UNI}: In the case of a multivariate
time series Y, univariate approaches are still of interest since the multivariate
forecasting task can be decomposed in a number of single-output multi-input
tasks (or equivalently in a set of NARX tasks with exogenous variables)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Yt+1[1] = f1(Yt[1], . . . , Yt−m+1[1], . . . ,
Yt[n], . . . , Yt−m+1[n]) + wt[1]

...
Yt+1[n] = fn(Yt[1], . . . , Yt−m+1[1], . . . ,

Yt[n], . . . , Yt−m+1[n]) + wt[n]

(6)

In this case the training set is used to learn the n mapping functions fi,
i = 1, . . . , n, with wt[i] being uncorrelated disturbances. For large n the prob-
lem of large input dimensionality can be addressed by adopting a feature selec-
tion technique, selecting a reduced number q of most correlated features For
these univariate techniques, we will also consider a naive method in which
∀i ∈ {1, . . . , n}, fi(t) = Yt−1[i], i.e. for every series, the forecast for the following
H steps is given by the last available value. These are the baseline methods
against which we will compare the performances of our forecaster.

Partial Least Squares - PLS: Partial Least Squares [15] allows the joint fore-
casting of the H steps ahead of the multivariate time series on the basis of the
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lagged vectors Yt, . . . ,Yt−m. This is a multi-input multi-output regression task
where the number of inputs amounts to nm and the number of outputs to Hn
respectively, with n being the number of variables, m the embedding order of the
model and H being the forecasting horizon. The benefit of PLS is that it allows
at the same time a dimensionality reduction of the inputs and a joint prediction
of the outputs, taking then into consideration the dependency between the future
steps. An example of application of PLS in financial time series forecasting can
be found in [22].

Recurrent Neural Networks - {RNN, LSTM}: Recurrent Neural networks (RNN)
form a class of predictive models based on neural networks, in which recurrent
connections to the network inputs allow to model dynamic temporal depen-
dencies. In their simple form (also known as simple RNN) [17,23], the recurrent
connections come from a hidden state Ht, which is also used for predicting future
values Yt:

Ht = σ(WHY Yt−1 + WHHHt−1 + BH), (7)
Yt = WY HHt + BY (8)

The matrices WHY , WHH , WY H , BH and BY are the parameters (weights and
biases) of the network, typically learned by gradient descent algorithms such as
backpropagation through time [17]. A sigmoid activation function σ allows the
modeling of nonlinear dependencies, while the recurrent connections allow the
modeling of long-term temporal dependencies. Research on RNNs has recently
been boosted by the advent of General Programming Graphic Processing Units
(GPGPU), and improved design of the memory cell (Long-Short Term Memory
cells [20]). These have allowed much more efficient RNN implementations, and
effective training over multiple layers (deep RNNs). RNNs architectures have
reached state-of-the-art performances for volatility either as part of an LSTM-
GARCH hybrid model [21,33] or as standalone model [26].

3.2 Datasets Description

CAC40: The available data consists of 1645 data points of the 40 time series
composing the french stock market index CAC40 from 02/01/2012 to 08/06/2018
(approximately 6 years and 5 months) in OHLC (Opening, High, Low, Closing)
format.

Cryptocurrencies: The available data comes from the Kaggle dataset “Every
Cryptocurrency Daily Market Price”1 constituted of 785,024 observation of 1644
different cryptotokens from 28/04/2013 to 06/06/2018. However the number of
available datapoints per cryptotoken is inversely proportional to the lifespan of
the token itself. In other words, the further we go into the past, the fewer values
we have for our analysis, as depicted in Fig. 2. For these reasons, we restricted
our analysis to the period from 28/01/2017 to 06/06/2018 for which we have
complete OHLC data for 291 tokens.
1 https://www.kaggle.com/jessevent/all-crypto-currencies.

https://www.kaggle.com/jessevent/all-crypto-currencies
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Fig. 2. Number of available datapoints for the cryptocurrencies dataset as a function
of time

3.3 Volatility Proxies

The OHLC available data is composed of several quantities of interest, each of
them on a daily time scale: P

(o)
t , P

(c)
t , P

(h)
t , P

(l)
t , respectively the stock prices

at the opening, closing of the trading day and the maximum and minimum
value for each trading day. In the absence of detailed information concerning the
price movements within a given trading days, stock volatility becomes directly
unobservable [30]. To cope with such problem, several different measures (also
called proxies) have been proposed in the econometrics literature [16,19,24,27]
to capture this information. However, there is no consensus in the scientific
literature upon what volatility proxy should be employed for a given purpose.
Nevertheless, for an empirical analysis of the use of volatility proxies in the case
of univariate forecasting, the interested reader could find more details in [8].

Volatility as Variance. The first family of proxies corresponds to the natural
definition of volatility [27], that is, a rolling standard deviation of a given stock’s
continuously compounded returns over a past time window of size n:

σSD,w
t =

√√√√ 1
w − 1

w−1∑

i=0

(rt−i − r̄w)2 (9)
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where

rt = ln

(
P

(c)
t

P
(c)
t−1

)
(10)

represents the daily continuously compounded return for day t computed from
the closing prices P

(c)
t and r̄w represents the returns’ average over the period

{t, · · · , t − w}. In this formulation, w represents the degree of smoothing that
is applied to the original time series. We will consider here w ∈ {5, 10, 21},
representing respectively one week, two weeks and one month of trading.

Volatility as a Proxy of the Coarse Grained Intraday Information. The second
family of proxies that we will consider is the σi

t one, analytically derived by
[16] by incorporating supplementary information (i.e. opening, maximum and
minimum price for a given trading day) and trying to optimize the quality of
the estimation. Among all the defined proxies, we will focus on:

σ0
t =

[
ln

(
P

(c)
t+1

P
(c)
t

)]2

= r2t (11)

u = ln

(
P

(h)
t

P
(o)
t

)
d = ln

(
P

(l)
t

P
(o)
t

)
c = ln

(
P

(c)
t

P
(o)
t

)
(12)

where u is the normalized high price, d is the normalized low price and c is the
normalized closing price.

σ4
t = 0.511(u − d)2 − 0.019[c(u + d) − 2ud] − 0.383c2 (13)

σ6
t =

a

f
· log

(
P

(o)
t+1

P
(c)
t

)2

︸ ︷︷ ︸
Nightly volatility

+
1 − a

1 − f
· σ̂4(t)

︸ ︷︷ ︸
Intraday volatility

(14)

The value of f ∈ [0, 1] represents the fraction of the trading day in which
the market is closed. It is by definition bounded in the interval [0, 1], In the case
of CAC40, we have that f > 1 − f , since trading is only performed of roughly
one third of the day. Here, a is a weighting parameter, whose optimal value,
according to [16] is shown to be 0.17, regardless of the value of f .

After a preprocessing phase of the datasets, involving removal of missing
values and proxy calculation for each time series, the data is restructured in a
multivariate time series matrix form Y having N (number of observations) rows
and n (number of variables/time series) columns. For each proxy, this matrix is
such that each row Yt represent a n-dimensional vector containing the value of
the given proxy for of the n variables at the time t, and the scalar value Yt[j]
represent the value of jth (j = 1, . . . , n) variable at time t.
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4 Experimental Results

The experimental study assessed and compared the methods previously discussed
in the article. The methods are listed below together with the software used for
the experiments. Note that, for the sake of assessment, we set the lag m = 2 and
the maximum number of latent factors to q = 3 for all methods, unless specified
otherwise.

1. NAIVE: univariate baseline method using the last observed value for each
time series as prediction for the following H steps.

2. UNI: univariate multi-step-ahead Direct forecasting of each individual series
(Eq. 6) with a feature selection process based on correlation.

3. PLS: partial-least-squares forecasting (Sect. 3.1) implemented by the function
mvr of the R package pls. The optimal values for the size of the input space
and the number of principal components q is determined through an out-of-
sample criterion.

4. RNN: recurrent neural network implemented by the keras predict function
of kerasR2, the R keras interface to the keras Deep Learning library3 for
Theano. The network is a fully-connected RNN with 10 hidden units. Since
an automated setting of the number of units would not have been feasible due
to an excessive computational time, this number has been set on the basis of
trial and error over a small number of synthetic series.

5. LSTM: As RNN, the model is a fully connected RNN, with 10 hidden units
implemented using kerasR. It differs from RNN as it employs LSTM cells
[20] in the hidden layer, instead of regular neurons.

6. DFM: linear Dynamic Factor Model where PCA is used for factor estimation,
the number of factors is set to q and the forecasting of the factors is carried
out with a VAR method implemented by the estBlackBox function of the R
package dse. The batch PCA is computed using the base R eigen function.

7. DFMLPCA: Dynamic Factor Machine Learner where PCA is used for factor
estimation, the number of factors is set to q and the forecasting of each factors
is carried out in a univariate manner using a local learning predictor (lazy
learning [5]) and a multi-step-ahead Direct strategy.

8. DFMLA: it differs from DFMLPCA because of the use of an autoencoder
instead of PCA in the process of factor estimation.

9. DFML’PCA: it differs from DFMLPCA because of the automatic selection
strategy (described in [4]): the number of factors (in the range [1, q]) and the
multi-step-ahead strategy (among Direct, Iterated and MIMO) and the lag
m are selected by an out-of-sample strategy carried out on the training set.

4.1 Results Discussion

For each multivariate dataset we performed time series cross-validation following
a rolling origin strategy [29]. The size of the training set is 2N/3 and a sequence
of 50 different test sets of length H is considered.
2 https://github.com/statsmaths/kerasR.
3 https://keras.io.

https://github.com/statsmaths/kerasR
https://keras.io
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For each test set, all methods are assessed in terms of the average Normalized
Mean Squared Error:

NMSE =

∑n
j=1 NMSE[j]

n

where

NMSE[j] =
∑H

h=1(YT+h[j] − ŶT+h[j])2

V [j]H

V [j] is the variance of the series Y [j] and T + 1 is the starting index of the
continuation set.

While dealing with high dimensionality (n = 291) coupled with a relatively
low number of observations (N = 495), as in the case of the Cryptocurrency
dataset (Table 1), using the σi

t family of proxies, the DFML, even without
hyperparameter optimisation, clearly outperforms all the concurrent methods.
It should also be noted that some methods tested in the original DFML paper
[4] (i.e. VAR, DSE, SSA) could not be tested due to numerical problems related
to the limited number of available observations. The performances of DFML are
mitigated while using proxies coming from the σSD,w

t family, where the perfor-
mance of the Naive method improves, even for forecasting horizons up to 20 steps
ahead, as the smoothing provided by the window size parameter w increases. In
both the cases, a linear dimensionality reduction technique with no optimiza-
tion (DFM, DFMLPCA) is shown to improve the performances of the forecaster,
compared to nonlinear (DFMLA) and optimized (DFML’PCA) ones.

A similar ranking among the methods is observed in the case of the CAC40
dataset (Table 2), characterized by a lower dimensionality (n = 40) but an higher
number of points (N = 1641). Here we can observe a generally higher average
normalized NMSE, indicating a higher complexity of the forecasting problem.
For the σi

t family, PLS and DFM appears as competitive alternatives of the
DFML, especially for longer horizons (h > 15). As in the previous case, for the
σSD,w

t family of proxies, the performances of the DFML family are affected by the
value of the smoothing factor w, where, the higher the smoothing factor is, the
less effective the DFML becomes for shorter horizons, with the Naive method
becoming the best one, while still maintaining good forecasting accuracy for
longer horizons.

In addition to forecasting accuracy, we also analyzed the total computational
time required to produce a forecast. The total computational time is obtained
by summing up the time required to train the considered model and the time
needed to generate a forecast. Figure 3a shows that, for low dimensionalities
(n = 40) the total computational time of the different techniques is comparable,
and independent of the forecasting horizon, except for the optimized DFML’PCA,
where the comparison of different forecasting strategies require a computational
time proportional to the length of the forecasting horizon. On the other hand, for
higher dimensionalities (n = 291), the computational time required to train mul-
tiple univariate models (UNI), neural based models (RNN and LSTM) and PLS
increases considerably due to the increase of both dimensionality and forecasting
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the CAC40 - σ4 (a) (n = 40) and cryptocurrencies - σ4 (b) (n = 291) dataset-proxy
combination.



18 J. De Stefani et al.

Table 1. Cryptocurrencies - volatility time series: NMSE (averaged over all the contin-
uation sets) of the different forecasting methods. The bold notation is used to highlight
all techniques which are not significantly worse (pv = 0.05) than the one with the lowest
NMSE score.

Dataset H Naive UNI PLS DFM DFMLA DFMLPCA DFML′
PCA LSTM RNN

2 0.988 0.660 0.630 0.595 0.631 0.594 0.596 0.630 0.670

5 0.982 0.646 0.613 0.579 0.613 0.576 0.588 0.605 0.656

σ0
t 10 1.042 0.608 0.581 0.543 0.575 0.539 0.538 0.570 0.615

15 1.172 0.602 0.584 0.540 0.569 0.537 0.547 0.563 0.599

20 1.247 0.579 0.555 0.515 0.544 0.512 0.514 0.540 0.593

50 1.024 0.517 0.503 0.451 0.483 0.451 0.466 0.479 0.521

2 0.831 0.607 0.602 0.540 0.611 0.528 0.543 0.585 0.647

5 0.816 0.598 0.585 0.521 0.580 0.510 0.522 0.559 0.638

σ4
t 10 0.945 0.582 0.579 0.505 0.564 0.491 0.494 0.542 0.590

15 0.924 0.582 0.592 0.508 0.565 0.495 0.498 0.551 0.580

20 1.061 0.578 0.584 0.501 0.554 0.489 10.969 0.539 0.575

50 0.950 0.553 0.563 0.474 0.524 0.472 0.476 0.510 0.543

2 0.946 0.587 0.588 0.528 0.580 0.512 0.527 0.547 0.613

5 1.103 0.561 0.578 0.507 0.551 0.479 0.480 0.531 0.587

σ6
t 10 1.101 0.583 0.590 0.516 0.579 0.499 0.500 0.553 0.591

15 1.041 0.592 0.616 0.525 0.574 0.505 0.509 0.554 0.591

20 1.000 0.589 0.592 0.522 0.568 0.507 0.509 0.551 0.586

50 1.185 0.557 0.582 0.481 0.530 0.481 0.474 0.514 0.560

2 0.269 0.351 0.648 0.499 0.662 0.500 0.524 0.647 0.739

5 0.511 0.533 0.674 0.519 0.668 0.514 0.534 0.647 0.717

σSD,5
t 10 0.719 0.612 0.669 0.523 0.647 0.516 0.534 0.635 0.790

15 0.818 0.627 0.662 0.527 0.638 0.520 0.523 0.616 0.794

20 0.852 0.636 0.653 0.517 0.629 0.514 0.526 0.614 0.771

50 0.974 0.611 0.636 0.484 0.577 0.497 0.481 0.558 0.748

2 0.113 0.258 0.754 0.491 0.756 0.494 0.534 0.722 0.796

5 0.238 0.415 0.769 0.501 0.751 0.504 0.541 0.728 0.838

σSD,10
t 10 0.466 0.598 0.781 0.513 0.746 0.507 0.543 0.719 1.027

15 0.606 0.668 0.780 0.526 0.737 0.514 0.558 0.713 0.898

20 0.668 0.706 0.777 0.523 0.741 0.522 0.574 0.701 0.911

50 0.891 0.726 0.778 0.514 0.683 0.547 0.533 0.657 0.907

2 0.052 0.203 0.989 0.493 0.992 0.493 0.570 0.899 1.034

5 0.108 0.316 0.986 0.501 0.977 0.504 0.571 0.864 1.144

σSD,21
t 10 0.199 0.522 0.987 0.513 0.958 0.514 0.573 0.891 1.065

15 0.295 0.658 0.988 0.523 0.963 0.528 0.572 0.848 1.340

20 0.397 0.748 0.990 0.535 0.874 0.544 0.571 0.863 1.117

50 0.775 0.833 1.014 0.586 0.882 0.649 0.612 0.808 1.252
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Table 2. CAC40 - volatility time series: NMSE (averaged over all the continuation
sets) of the different forecasting methods. The bold notation is used to highlight all
techniques which are not significantly worse (pv = 0.05) than the one with the lowest
NMSE score.

Dataset H Naive UNI PLS DFM DFMLA DFMLPCA DFML′
PCA LSTM RNN

2 1.332 1.047 0.972 0.969 0.987 0.962 1.010 1.018 1.006

5 2.177 1.916 1.826 1.857 1.872 1.838 1.822 1.849 1.865

σ0
t 10 1.438 1.246 1.157 1.173 1.184 1.164 1.155 1.164 1.184

15 2.499 1.304 1.220 1.220 1.227 1.209 1.222 1.219 1.242

20 1.566 1.227 1.155 1.153 1.163 1.174 1.146 1.160 1.160

50 2.026 1.221 1.136 1.135 1.144 1.134 1.120 1.160 1.164

2 0.585 0.504 0.463 0.433 0.521 0.434 0.450 0.564 0.496

5 2.295 1.347 1.318 1.292 1.356 1.268 1.275 1.328 1.346

σ4
t 10 1.047 1.003 0.948 0.936 0.991 0.911 0.946 1.014 1.018

15 1.372 1.132 1.078 1.067 1.118 1.048 1.071 1.126 1.120

20 1.272 1.023 0.948 0.926 0.977 0.908 0.933 1.010 1.007

50 1.111 1.036 0.936 0.942 0.987 0.919 0.981 1.052 1.042

2 1.780 0.854 0.805 0.776 0.859 0.767 0.758 0.852 0.822

5 1.859 1.800 1.750 1.741 1.809 1.747 1.715 1.781 1.770

σ6
t 10 1.264 1.171 1.106 1.102 1.154 1.083 1.118 1.149 1.139

15 1.222 1.074 1.001 0.999 1.049 1.001 1.011 1.093 1.046

20 1.332 1.185 1.103 1.107 1.156 1.108 1.116 1.172 1.170

50 1.280 1.188 1.112 1.098 1.139 1.089 1.126 1.206 1.177

2 0.276 0.649 0.834 0.783 0.877 0.787 0.769 0.823 0.864

5 1.122 1.275 1.304 1.289 1.355 1.242 1.215 1.329 1.352

σSD,5
t 10 1.329 1.199 1.163 1.139 1.167 1.095 1.162 1.131 1.201

15 1.408 1.149 1.095 1.068 1.113 1.064 1.066 1.111 1.134

20 1.576 1.215 1.154 1.133 1.166 1.141 1.150 1.203 1.182

50 2.584 1.292 1.316 1.444 1.184 1.243 1.192 1.229 1.273

2 0.453 0.667 0.901 0.805 0.964 0.805 0.788 0.827 0.881

5 0.698 0.886 1.018 0.932 1.073 0.934 0.927 0.910 1.009

σSD,10
t 10 1.133 1.010 1.044 0.970 1.073 1.005 1.005 1.000 1.104

15 1.495 1.065 1.140 1.292 1.271 1.092 1.013 1.066 1.032

20 1.642 1.141 1.181 1.340 1.223 1.145 1.078 1.108 1.178

50 1.916 1.258 1.233 1.256 1.158 1.144 1.171 1.310 1.338

2 0.033 0.306 0.747 0.509 0.772 0.510 0.561 0.776 0.725

5 0.123 0.372 0.732 0.530 0.736 0.595 0.566 0.867 0.716

σSD,21
t 10 0.346 0.520 0.808 0.660 0.853 0.682 0.673 0.992 0.932

15 0.608 0.680 0.862 0.771 0.893 0.795 12.315 0.970 0.868

20 0.827 0.827 0.923 0.905 0.890 0.840 0.777 1.010 1.256

50 1.603 1.259 1.210 1.357 1.109 1.076 1.311 1.282 1.585
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horizons, while DFML models, thanks to the dimensionality reduction compo-
nent, maintain a reduced computational time regardless of the forecasting hori-
zon.

5 Conclusion and Future Work

The empirical analysis shows that DFML is able to produce accurate volatility
forecasts, especially in the case of high-dimensional noisy series (i.e. Cryptocur-
rencies dataset) with non-smoothed volatility proxies σi, by summarizing well
the intrinsic market correlations in a reduced number of factors. However, the
presence of a smoothing factor (as in the σSD,w proxies family) is shown to
worsen the performances of the DFML methods. Moreover, we have shown that,
thanks to the dimensionality reduction component, DFML methods can produce
multi-step ahead forecasts with the same accuracy as concurrent methods with
a great reduction in terms of computational cost. In order to further improve
this framework we foresee different possible extensions. On one hand we believe
that the use of additional volatility proxies, together with an automated vari-
able selection process could further improve the forecasting performances. On
the other hand, the use of incremental dimensionality reduction techniques could
further improve the computational efficiency of the method at the expense of a
small reduction in forecasting accuracy.
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W.K., Hautsch, N., Overbeck, L. (eds.) Applied Quantitative Finance, pp. 25–37.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-540-69179-2 15

14. Forni, M., Hallin, M., Lippi, M., Reichlin, L.: The generalized dynamic factor
model. J. Am. Stat. Assoc. 100(471), 830–840 (2005). https://doi.org/10.1198/
016214504000002050

15. Franses, P., Legerstee, R.: A unifying view on multi-step forecasting using an
autoregression. J. Econ. Surv. 24(3), 389–401 (2010)

16. Garman, M.B., Klass, M.J.: On the estimation of security price volatilities from
historical data. J. Bus. 53(1), 67–78 (1980)

17. Graves, A.: Supervised Sequence Labelling with Recurrent Neural Networks.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24797-2

18. Hafner, C.M., Herwartz, H.: Structural analysis of portfolio risk using beta impulse
response functions. Statistica Neerlandica 52(3), 336–355 (1998)

19. Hansen, P.R., Lunde, A.: A forecast comparison of volatility models: does anything
beat a garch (1, 1)? J. Appl. Econometrics 20(7), 873–889 (2005)

20. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

21. Kim, H.Y., Won, C.H.: Forecasting the volatility of stock price index: a hybrid
model integrating LSTM with multiple GARCH-type models. Expert Syst. Appl.
103, 25–37 (2018)

22. Kim, J.M., Jung, H.: Time series forecasting using functional partial least square
regression with stochastic volatility, GARCH, and exponential smoothing. J. Fore-
cast. 37(3), 269–280 (2018)

23. Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks
for sequence learning. arXiv preprint arXiv:1506.00019 (2015)

24. Parkinson, M.: The extreme value method for estimating the variance of the rate
of return. J. Bus. 53(1), 61–65 (1980)
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