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Abstract. With the advent of deep learning and new embedded devices
capable of running these models at the edge of the network there is poten-
tial for deep edges in IoT and smart cities. This will enable a considerable
increase in the analytics and urban reasoning that can take place at the
edge of the network. The end-to-end latency for these models will also be
reduced due to the physical proximity of the edge devices, which allows
reasoning one hop away from data generation. This will enable a range
of urban reasoning applications that require reduced latency and jitter
such as vehicle collision detection, network demand prediction and smart
grids. The increased accuracy of deep learning models at the edge will
reduce traffic flow to the cloud as only a subset of the data will need to be
reported after a first pass analysis. This will improve the privacy of users
as edge devices can process the reported data to remove identifiable infor-
mation to keep the user anonymous before sending it to the cloud. This
multi-stage analytics allows for initial urban reasoning on a city wide
scale for deriving context information with additional analytics in the
cloud focusing on certain domain challenges. In this paper we describe
the architecture and advantages of deep edges and compare it against
alternative IoT urban reasoning architectures such as cloud-based and
traditional embedded devices such as raspberry pis.

1 Introduction

Urban reasoning provides insight into the major problems that our cities face
(e.g., crowd congestion, increased network demand, air pollution, water floods,
etc.) to allow for the efficient running of a city. Problems such as crowd congestion
and increased network demand are set to get worse with the UN predicting 60
per cent of people globally and one in every three people will live in cities with
at least half a million inhabitants by 2030 [1]. This will put additional strain
on our cities and we need effective urban reasoning algorithms and a suitable
architecture to deploy them on, to be able to handle these increased demands.
The Internet of Things (IoT) enables easier access and interaction to a wide
variety of devices such as CCTV cameras, monitoring sensors, displays, vehicles
and so on, this data can be used to create more advanced urban reasoning
applications, thus realising the smart city concept [2].

The smart city of the future will have much more data generation and net-
work demand especially with self-driving cars and the processing of bandwidth
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heavy CCTV footage. There will also be an increase in the number of devices
connected to the IoT, with forecasts predicting 26–50 billion connected devices
by 2020 [3]. These applications have different QoS requirements based on the
sensitivity and criticality of the application. IoT application QoS can typically
be categorised as best effort (no QoS), differentiated services (soft QoS) and
guaranteed services (hard QoS) [4]. In the hard QoS case, there are strict hard
real-time QoS guarantees. This is appropriate for safety critical applications such
as monitoring patients in a hospital or collision avoidance in a self-driving car
system. Soft QoS does not require hard real-time guarantees but needs to be able
to reconfigure and replace services that fail. This could be a routing application,
which uses air quality, flooding and pedestrian traffic predictions, to provide the
best route through the city. If one of the services is about to fail, the applica-
tion should be recomposed using suitable replacement services. The final case is
best effort, where there are no guarantees when a service fails, such as a simple
atomic service that measures the temperature in a house.

For services with hard and soft QoS there is a need for edge computing [5,6].
According to this paradigm, computing resources are made available at the edge
of the network, close to (or even co-located with) end-devices. The reduced
latency achieved by placing computing resources close to the devices generating
the data allows for hard and soft QoS applications. As these applications can
be safety critical they also require algorithms that are extremely accurate. In
recent years deep artificial neural networks have won numerous competitions in
pattern recognition and machine learning [7]. The combination of accurate deep
learning models one hop away from users to reduce latency allows for a range of
new services and urban reasoning applications in smart cities [8]. For example
the use of deep convolution networks for vehicle collision detection [9] as well
as LSTM networks for forecasting QoS and network demand [10]. We call this
architecture “deep edges” as it combines the benefits of deep neural networks
and edge networks.

Deep edges can be used in a multi-stage analytics architecture where the first
stage of analytics takes place at the edge offering reduced end-to-end response
time on local data. This data can then be processed to remove user identifi-
able information and compressed to reduce the bandwidth needed to send it to
the cloud. At the cloud level the data from a number of edge devices can be
aggregated to perform analytics at a larger scale to derive context information.
This multi-stage platform makes the best of both approaches with the speed of
the edge and the persistence and large scale storage of the cloud. For example,
network-intensive data such as CCTV footage can be processed and analysed
one hop away from end-devices, reducing the bandwidth demands to data cen-
ters. Also, deep edges can support the mobility of devices and geographically
distributed applications [6], for example, real-time analytics of data collected by
mobile devices and environmental monitoring through geographically distributed
wireless sensor networks [11].

The remainder of the paper is organised as follows: Sect. 2 highlights some of
the applications of urban reasoning in smart cities and the challenges associated
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with using a traditional cloud environment that may be solved with deep edges.
Section 3 outlines our architecture for deep edges and discusses how this allows
for alternative training approaches. Section 4 describes the experimental setup
and Sect. 5 presents the results of those experiments. Section 6 concludes the
paper and presents future work.

2 Urban Reasoning in Smart Cities

Urban reasoning is a broad term that can provide insights into a variety of
challenges that our cities face (e.g. congestion, network demand, air pollution,
water floods, etc.). In this section we look at some of the challenges of cloud-
based urban reasoning in a smart city and how deploying these applications on
deep edges can solve those challenges.

The uptake in automated cars in the next few years will not only increase
demand but will also increase the need for urban reasoning about congestion
and collision detection [12]. Problems such as urban congestion can be handled
in a typical cloud-based architecture, but collision detection requires much lower
end-to-end latency and jitter. Alternative applications such as remote health
monitoring, warehouse logistics and augmented reality also need to be able to
have extremely low latency and jitter to provide effective applications [13]. As
these applications can be critical they also need accurate algorithms capable of
detecting objects and patterns. Deep learning has emerged as one of the most
promising technologies in recent years and has dramatically improved state of
the art performance in speech recognition, visual object recognition and object
detection [9]. For example, autoencoders and deep convolutional networks can be
used to provide collision avoidance in self-driving cars [14] and face recognition
in CCTV cameras for emergency response [15]. By deploying these applications
at the edge of the network we can reduce the end-to-end latency and jitter by
reducing the physical distance between the data generation and analysis. This
reduced latency and jitter with the combination of increased accuracy makes it
possible for applications such as remote health monitoring, warehouse logistics
and collision detection to work effectively as part of a smart city.

Another issue with current cloud-based urban reasoning is that high-
bandwidth applications such as CCTV analysis and users in the city transmitting
1080p videos to the cloud can quickly saturate the network. The cumulative data
rate for even a small fraction of users in a modest-size city would saturate its
metropolitan area network: 12,000 users transmitting 1080p video would require
a link of 100 gigabits per second; a million users would require a link of 8.5
terabits per second [13]. One of the ways that we can stop the flooding of the
network is to use edge computing frameworks such as the GigaSight framework,
where video from a mobile device only travels as far as a nearby cloudlet [16].
The cloudlet runs computer vision analytics in near real time and only sends the
results (content tags, recognised faces, etc.) along with the metadata (owner,
capture location, timestamp, etc.) to the cloud. This dramatically reduces the
bandwidth to the cloud by three to six orders of magnitude. There are a number
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of other high data rate applications in IoT especially in the context of automo-
biles, which contain a number of sensor streams that require real-time analytics
such as sensors in the engine and other sources to alert the driver to imminent
failure or the need for preventative maintenance. This can serve as the first-pass
in a multi-stage analytics process.

As applications become more dependent on the cloud they increase their
vulnerability to cloud outages. The assumption that there is always good end-to-
end network quality and few network or cloud failures is not always applicable.
This can happen in countries with a weak network infrastructure or a cyber-
attack being carried out on the cloud provider such as denial of service. It can
also happen through human error from the cloud provider such as the outage of
Amazon S3 web service due to a typo [17], which can have catastrophic effects.
Edge computing can alleviate cloud outages and provide a fallback service that
can temporarily mask cloud inaccessibility. During a failure, the edge device can
serve as a proxy for the cloud and perform critical services. This allows urban
reasoning applications to function in the smart city and to provide services even
when there is a cloud outage. When the failure is repaired, actions committed
to the edge device can be propagated to the cloud for reconciliation.

With the enforcement of the General Data Protection Regulation (GDPR)
on the 25th May 2018 as part of the EU Data Protection Directive, users have
become much more interested in what data is being collected about them, how
that data is stored and who will have access to their data. There is increasing
reluctance to release raw sensor data to an IoT cloud hub, and users and organ-
isations want finer-grain control over the release of that data. Users should be
able to delete any data, which they deem to be sensitive and providers should
use denatured data with faces in images being blurred and sensor readings being
coarsely aggregated or omitted at certain times of day or night. Current IoT
architectures for urban reasoning, in which data is transmitted directly from
sensors to a cloud hub makes such fine grained control impossible. The edge
device can run trusted software modules called privacy mediators that execute
on the device and perform denaturing and privacy-policy enforcement on the
sensor streams [18]. Edge computing can provide a foundation for scalable and
secure privacy that aligns with natural boundaries of trust, while still allowing
for urban reasoning on the denatured data.

3 Deep Edges

As mentioned in the introduction deep edges combine the increased accuracy of
deep learning models [19] with the reduced latency, increased bandwidth and pri-
vacy of edge networks. This combination of technologies has not been applicable
before as devices capable of running these networks at the edge such as the Jet-
son Tx2 have only been developed in recent years. These devices can be arranged
as a network of gateways as shown in Fig. 1a. Here the embedded GPUs (Jetson
Tx2) have a number of services registered on them that can be used for urban
reasoning such as traffic and weather data that would be distributed throughout
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the city. Figure 1b shows a service oriented middleware deployed on the GPUs
to manage the registration and execution of the IoT services in the city. The
additional processing power in deep edges compared to other traditional IoT
gateways (e.g. raspberry pi) allows them to run the prediction engine in the
middleware locally to make predictions for IoT services in the environment for
users based on other similar users in the environment [20,21]. This makes the
IoT applications in the environment much more reliable.
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Fig. 1. Demonstration and middleware architecture for deep edges

There are a number of alternative deep learning models that can be applied
to urban reasoning applications. LSTMs can also be applied to human mobility
and transportation pattern modelling to predict future traffic congestion [23].
LSTM and convolution networks can be combined to capture spatio-temporal
correlations and applied to precipitation nowcasting to provide accurate rainfall
prediction for the city [24]. We can also apply restricted Boltzmann machine to
network anomaly detection to discriminate the occurrence of hostile activities in
the city network [25]. To be effective in a smart city these applications also need
the low latency provided by deep edges for hard and soft QoS applications.

Deep edges also help with some of the recent challenges that have been intro-
duced with the establishment of new laws such as GDPR. One of the main chal-
lenges of training these models on real data currently, is to respect the privacy
of the user who is submitting information. By using deep edges instead of a tra-
ditional centralised cloud based approach, we can make use of a number of alter-
native training strategies to improve the model accuracy, while still respecting
the privacy of the user. This can be using federated learning [26], decentralised
deep learning [27], communication-efficient learning [28] and distributed optimi-
sation [29]. Federated learning in particular, has a master model in the cloud and
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this model is updated from the embedded GPUs located throughout the city.
The updates can be merged into the master model immediately in an encrypted
fashion so that no individual update is stored online and no training data is
exchanged. This would allow the training of accurate models, while respecting
the privacy of users and conforming to GDPR.

4 Experimental Setup

In our experiments, we focus on the network topology and the effect that it has
on response time and packet loss. We consider a Nvidia Jetson TX2 connected to
a router 1 hop away, a Rapberry Pi 3 Model B+ (RPi) connected in a MANET 1
hop away and a desktop computer (CPU) connected to a different network in our
university 3 hops away. We also consider a more traditional cloud based network
topology using Amazon ec2 instances. We consider three geographical locations:
Dublin, Paris and Frankfurt. We conduct the network test in our university,
Trinity College Dublin and observed the round trip time (RTT) between the
client and server obtained through ICMP ping messages. To obtain a reliable
measurement of the network conditions we send 5000 ping messages to each of
the devices at one second intervals and show the distribution of the network
delay. We connect to each of the devices using a wifi based network.

As discussed in Sect. 3 there are a large number of deep learning algorithms
that can be used for urban reasoning in a smart city. In our experiments we
consider the training time of two algorithms: a two layer autoencoder and a
convolutional neural network with two convolution layers, two pooling layers
and a fully connected layer, which are trained on the MNIST database of hand-
written digits [30]. In our experiments we consider a number of devices with
and without access to GPUs to evaluate the effect on training times. The non
GPU based devices are a Raspberry Pi 3 Model B+ with a 1.4 GHz quad-core
Cortex-A53 with 1 GB ram and a desktop computer with a 3.4 GHz quad-core
Intel i7-4770 CPU and 8 GB ram. For the GPU based devices we use a Nvidia
Jetson TX2 with an Nvidia Pascal GPU (256 CUDA cores) and 8 GB ram, an
Amazon g2.2xlarge instance with an Nvidia K520 (3072 CUDA Cores) with 8GB
ram and an Amazon p2.xlarge instance with an Nvidia K80 (4992 CUDA cores)
with 24 GB of ram.

To measure the network delay we record the RTT in ms and the packet loss
as a percentage of the 5000 packets that were sent during testing. We measure
the training time in seconds for each algorithm and repeat the training 10 times
to include any variability.

5 Results

5.1 Response Time

Figure 2 shows the network delay for the various devices with the network con-
figuration explained in Sect. 4. We draw a box plot for the network delay of
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each of the devices showing the median delay as the orange line and the average
delay as the dashed green line. The green line is above the median in all the
plots showing that there are outliers not seen in the figure. For example there
are some outliers for the Amazon data centers that are greater than 100 ms that
are not shown on the graph but included in the median and average results.

We see that the Jetson configuration performs the best with a median delay
of 2.3 ms and an average of 5.39 ms. The other device that is one hop away and
connected in a MANET is the raspberry pi (RPi); it has a slightly longer delay
with a median of 5.1 ms and an average of 8.5 ms. The CPU is located on a
different network in our university, which increases the network delay with a
median of 8.0 ms and an average of 10.8 ms. The Amazon Dublin data center
delay looks similar to the CPU except for the average delay, which shows the
outliers that cannot be seen in the figure. With a median of 7.5 ms and an average
of 24.1 ms the performance is surprisingly good for a cloud based configuration,
however this may be seen as a special case as the Amazon Dublin data center
is located very close to Trinity College, which would not typically be the case
for most cloud based services. To evaluate this we test two other geographically
close data center locations in Paris and Franfurt.
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Fig. 2. Network delay times (Color figure online)

The data center in Paris has a median delay of 24.905 ms with a mean of
40.2 ms and the data center in Frankfurt has a median delay of 27.5 ms with a
mean of 36.2 ms. This is still an optimistic view of cloud computing as Paris and
Franfurt are located relatively close to Dublin with good network links. Given
the current distribution of data centers worldwide the results would typically be
worse for cities in South America and Asia where there may be greater distance
to the nearest data center and worse network links.
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5.2 Packet Loss

Figure 3 shows the packet loss calculated as a percentage of the 5000 packets
sent. The figure shows a big difference between the first three configurations and
the cloud based data centers. For the Jetson and CPU we get a 0% packet loss
and a 1% packet loss for the Rpi. The packet loss for the other data centers
were 4.1% for Dublin, 4.3% for Paris and 2.1% for Frankfurt. Transmission con-
trol protocol (TCP) detects packet loss and performs retransmission to ensure
reliable messaging, however, this reduces the throughput of the connection. For
streaming media such as collision detection or CCTV footage it can result in
some of the frames being dropped and not processed. For critical applications
such as collision avoidance it is especially important to have a low packet loss
to increase throughput and avoid having frames that are not processed.
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Fig. 3. Network packet loss

5.3 Training Time

We investigate the training time of a number of different devices on two types
of deep networks: an autoencoder and a deep convolutional network. Figure 4
shows the training times for the autoencoder network that we train on various
devices. We can see the importance of having access to a GPU and how the
amount of CUDA cores on the GPU can influence the training time. We repeat
the training ten times and as can be seen by the standard deviation bars the
training time does not vary much. The longest training time is for the RPi with
an average of 8724 s (2.4 h). We did not graph this as it is such an outlier that
it made it difficult to analyse the other devices being tested. The other CPU
based training device was the next slowest, with an average training time of
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296.6 s. The Jetson Tx2 shows the advantage of having access to a GPU even in
a much smaller package with an average training time of 210.8 s. Having access
to additional CUDA cores in cloud level GPUs can also have a large effect on
the training time. The average training time for the g2.2xlarge was 118.1 s and
the average training time for the p2.xlarge was 98.4 s.
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Fig. 4. Autoencoder training time
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Figure 5 shows the training times for a convolutional network, which can be
used for image recognition and video analysis. The RPi is not graphed again
due to the long training time with an average of 4364 s (1.2 h). The convolution
network follows a similar pattern to the autoencoder with the CPU taking the
next longest to train with an average of 145.6 s. The Jetson reduces the training
time by more than half to 67.9 s. The two cloud level GPUs are also able to reduce
this even further with the g2.2xlarge taking 23.3 s and the p2.xlarge taking 14.9 s.

6 Conclusion and Future Work

The results of the experiments have provided a number of interesting insights to
urban reasoning especially in a smart city context. Initially we showed how the
use of an edge architecture can be useful to reduce the network delay from an
average of 40.2 ms in the Paris cloud and 24.1 ms in the Dublin cloud to 5.39 ms
on the Jetson at the edge. The reduced network delay and packet loss in the edge
architecture allows for a range of new urban reasoning applications e.g., collision
detection and patient monitoring. The improvement in training times compared
not only to other IoT devices such as the raspberry pi but also to a standard
desktop opens a range of possibilities for how we can train these deep networks
in the future. The ability for these devices to start with a master model and tune
this to suit the environment, while reporting updates in an encrypted fashion so
that no individual update is stored online and no training data is exchanged is
an exciting possibility.

Deep learning models have proven unreasonably effective in a number of chal-
lenging problems that can be applied to urban reasoning [19]. Further research
is needed in this area to collect large datasets from smart cities to validate the
effectiveness of these algorithms in a smart city environment. New devices capa-
ble of running these models are getting smaller and more powerful with the
newly announced Jetson Xavier having 20× the performance of the current Tx2
model, which we evaluated in this paper. This will allow for even deeper edges in
smart cities with the majority of urban reasoning tasks and analytics happening
one hop from the user.

In this paper we have shown how the combination of increased accuracy from
deep learning models and reduced latency, increased privacy and bandwidth from
edge devices can be combined to create a range of novel urban reasoning applica-
tions. With more powerful devices capable of training and updating these models
at the edge of the network we are at a tipping point for how urban reasoning
will be conducted in future, with interesting research questions in federated
learning, decentralised deep learning, communication-efficient learning and dis-
tributed optimisation. As part of our future work we plan to further investigate
the use of federated learning in smart cities to improve urban reasoning, while
respecting the privacy of the citizens by not uploading training data. This may
prove to be a more popular methodology for large scale machine learning in
future especially with the enforcement of GDPR.
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