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Abstract. Machine learning algorithms are responsible for a significant
amount of computations. These computations are increasing with the
advancements in different machine learning fields. For example, fields
such as deep learning require algorithms to run during weeks consuming
vast amounts of energy. While there is a trend in optimizing machine
learning algorithms for performance and energy consumption, still there
is little knowledge on how to estimate an algorithm’s energy consump-
tion. Currently, a straightforward cross-platform approach to estimate
energy consumption for different types of algorithms does not exist. For
that reason, well-known researchers in computer architecture have pub-
lished extensive works on approaches to estimate the energy consump-
tion. This study presents a survey of methods to estimate energy con-
sumption, and maps them to specific machine learning scenarios. Finally,
we illustrate our mapping suggestions with a case study, where we mea-
sure energy consumption in a big data stream mining scenario. Our ulti-
mate goal is to bridge the current gap that exists to estimate energy
consumption in machine learning scenarios.

Keywords: Machine learning · Green computing ·
Computer architecture · Energy efficiency

1 Introduction

Machine learning algorithms have been increasing their predictive performance
significantly during the past years. This is visible in tasks such as object recogni-
tion, where deep learning algorithms are beating human classifiers [17]. However,
this has occurred at a high cost of computation and energy. In order to achieve
such accurate models, the amount of computation (number of operations per sec-
ond) has been increasing exponentially, with a 3.5 month-doubling time1. This
has a direct impact on energy consumption.
1 https://blog.openai.com/ai-and-compute/.
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The challenge addressed in this paper is related to energy estimation and
energy measurement. While machine learning researchers are starting to focus
on the amount of energy consumption of their algorithms [7], estimating energy
consumption is non-trivial [16]. Our goal is to bridge the gap that currently
exists between computer architecture, in terms of estimating energy consump-
tion, and machine learning by proposing to the machine learning community
different approaches to model energy consumption. We present a survey with
the key approaches to estimate energy from different angles (e.g. architecture
level, instruction level). Moreover, from the different models that are presented,
we suggest which are more suitable for the learning task at hand. We conclude
the paper with a case study, where we put in practice the mentioned sugges-
tions, and we estimate the energy consumption of a specific data mining task,
with streaming data and real-time constraints.

The contributions of this paper are summarized as follows:

– We present a survey of the state-of-the-art and key methodologies to estimate
power and energy consumption, shown in Sect. 4

– We suggest different approaches to estimate energy for several machine learn-
ing scenarios, shown in Sect. 5

– We present a case study of applying one of the modeling approaches in a
stream mining scenario, shown in Sect. 6

– We bridge the gap between machine learning and computer architecture for
estimating energy consumption.

To the best of our knowledge, this is the first study that proposes direct
ways to estimate energy consumption for machine learning scenarios. We believe
that the best way to move forward, given the current trend, is by a close col-
laboration between researchers in machine learning and computer architecture.
We contribute by encouraging machine learning researchers to reduce the energy
consumption of their computations, and proposing ways on how to achieve that.
This is a preliminary study that plans to be extended by digging deeper into the
methodologies and mapping them to more machine learning scenarios (Sect. 7).

2 Energy and Power Consumption

This section aims to give a background explanation on energy and power con-
sumption for the machine learning audience. We explain general formulations
on power, time, and energy, and specific clarifications on how software programs
consume energy.

Energy efficiency in computing usually refers to a hardware approach to
reduce the power consumption of processors, or ways to make processors handle
more operations using the same amount of power [20].

Power is the rate at which energy is being consumed. The average power
during a time interval T is defined as [35]:

Pavg =
E

T
, (1)
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where E, energy, is measured in joules (J), Pavg is measured in watts (W), and
time T is measured in seconds (s). We can distinguish between dynamic and
static power. Static power, also known as leakage power, is the power consumed
when there is no circuit activity. Dynamic power, on the other hand, is the power
dissipated by the circuit, from charging and discharging the capacitor [11,18]:

Pdynamic = α · C · V 2
dd · f (2)

where α is the activity factor, representing the percentage of the circuit that is
active. Vdd is the voltage, C the capacitance, and f the clock frequency measured
in hertz (Hz). Energy is the effort to perform a task, and it is defined as the
integral of power over a period of time [11]:

E =
∫ T

0

P (t)dt (3)

Energy consumption is usually the key variable to consider, since it directly
translates to money spent on computations, and battery life of devices.

Finally, we conclude with an explanation of how programs consume energy.
The total execution time of a program is defined as [11]:

Texe = IC × CPI × Tc (4)

where IC is the number of executed instructions, CPI (clocks per instruction) is
the average number of clock cycles needed to execute each instruction, and TC

is the machine cycle time. The total energy consumed by a program is:

E = IC × CPI × EPC (5)

where EPC is the energy per clock cycle, and it is defined as

EPC ∝ C · V 2
dd (6)

The value CPI depends on the type of instruction, since different instructions
consume different amounts of energy. That is why measuring time does not give a
realistic view on the energy consumption, because there are instructions that can
consume more energy due to a long delay (e.g. memory accesses), or others that
consume more energy because of a high requirement of computations (floating
point operations). Both could obtain similar energy consumption levels, however,
the first one would have a higher execution time than the last one.

3 Challenge: Measuring Energy Consumption

Measuring the energy consumption of a computer program is challenging, since
there are many variables involved, e.g. cache hits, cache misses, DRAM accesses,
etc. There are different ways to measure the energy consumption of a com-
puter [16]. Traditional empirical ways to measure power are by using power
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meters at different places, ranging from a wall outlet [9], to direct measurements
at the motherboard. This approach outputs the real power consumption at a
specific time, however, it does not provide information of where the power is
consumed. More fine-grained approaches to measuring energy consumption are
using simulators or using performance monitoring counters. A computer con-
sumes energy or power by making use of its hardware components. The exact
energy consumption depends on the component’s use, and the energy consump-
tion of each component. Since this is a complicated and challenging approach,
power models to estimate the overall energy consumption are proposed.

This survey focuses on approaches that use either simulated hardware, or
performance monitoring counters (PMC). The advantages of using simulators is
that the researcher is able to have a detailed view of how each hardware compo-
nent is being accessed by a specific program. It also allows for instrumentation,
which can give energy consumption of different functions of a program. The main
disadvantage of using simulators resides on the added overhead, which makes it
unfeasible for obtaining real-time energy measurements.

PMC are available in almost all modern processors [25]. They provide the
ability to count microarchitectural events of the processor at run time [16]. Since
they are available for each core, and they can output many different statistics,
such as instructions per cycle (IPC) and cache accesses, many researchers have
used them to create power models. Moreover, Intel has created an energy model
called RAPL, that estimates the energy consumption based on PMC values [8,
28]. We have used this interface to estimate the energy consumption in our case
study.

4 Methods to Estimate Energy Consumption

This section presents different approaches to model power and energy consump-
tion. The scope of this survey includes papers analyzed by [16], and [23]. We plan
to extend this survey to include more estimation approaches, as presented in a
recent work [26], where the authors portray significantly more estimation tech-
niques. We have classified the papers based on three categories: type, technique,
and level.

Type refers to the type of scientific modeling approach, either empirical or
analytical. Analytical models estimate the power consumption for more than one
type of processor, based on mathematical equations that represent the power
behavior of the different parts of the processor. Empirical models are based
on empirical observations of one kind of processor, and they are not usually
applicable to other processor models.

Technique refers to approaches to model the energy, either by direct mea-
surement or by simulation [30]. The authors of [30] define it as the ways to
obtain the activity factors of the processor. The activity factors are those statis-
tics or indicators of how each architectural block is being used or accessed. For
instance, information on the instructions per cycle is one type of activity fac-
tor. A simulation approach to obtain the activity factors is based on simulating
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a specific hardware and instrumenting the execution on that platform. On the
other hand, obtaining the measurements directly can be done by accessing PMC.
While simulators introduce significant overhead, PMC measurement allows for
real-time energy monitoring, useful in machine learning learning contexts (e.g.
data stream mining). However, models based on PMC are less portable than
models based on simulations [12].

Finally, level refers to the granularity level of the model. We differentiate
between architecture or instruction level. Architecture level models breakdown
the energy consumption into the different elements of the processor and mem-
ory. For instance, they show the amount of energy consumed by the cache, the
DRAM, etc. Instruction level models breakdown the energy consumption by giv-
ing an energy cost to each instruction [34]. This is useful to optimize software,
since the model outputs which instructions are being the energy hotspots.

Table 1. Energy estimation models

Model Type Technique Level

[22] Analytical Simulation Architecture

[14] Empirical PMC Architecture

[19] Empirical PMC Architecture

[5] Analytical Simulation Architecture

[36] Analytical Simulation Architecture

[21] Empirical Simulation Architecture

[1] Empirical PMC Architecture

[2] Empirical PMC Architecture

[13] Empirical PMC Architecture

[12] Empirical PMC Architecture

[15] Empirical PMC Architecture

[27] Empirical PMC Architecture

[31] Analytical PMC Architecture

[29] Analytical Simulation Instruction

[34] Analytical Simulation Instruction

[23] Empirical PMC Both

[32] Analytical PMC Architecture

[30] Empirical PMC Instruction

[8] Empirical PMC Architecture

Type: = Analytical or empirical.
Technique: Performance monitoring counters (PMC),
or simulation
Level: Instruction or architecture.



248 E. Garćıa-Mart́ın et al.

Table 1 summarizes the studied papers and classifies them based on the cat-
egories explained above: type, technique, and level. Table 2 clusters the papers
into 6 different categories.

Table 2. Models clustered in 6 different categories, based on the features of the model

Category Energy estimation model features Papers

1 Analytical, Simulation, Architecture [5,22,36]

2 Empirical, PMC, Architecture [1,2,8,12–15,19,23,27]

3 Analytical, Simulation, Instruction [29,34]

4 Empirical, PMC, Instruction [23,30]

5 Analytical, PMC, Architecture [31,32]

6 Empirical, Simulation, Architecture [21]

Category 1 presents papers [5,22,36], which introduce analytical models,
based on simulation and at an architecture level. [5] and [36] are simulators
that estimate the CPU power consumption. Both are based on SimpleScalar [6],
a widely used microarchitecture simulator. [22] is a state-of-the-art simulator
that provides power, area, and timing models for multicore, multithreaded, and
manycore architectures.

Category 2 presents papers [1,2,8,12–15,19,23,27], which introduce empirical
models, based on performance counters and at an architecture level. [2,14] are
able to model both dynamic and static power of the processor. The authors of
[19] on the other hand do not differentiate between static and dynamic power
in their model. [12,13,15,19,23] use statistical correlations between performance
counters and hardware components. [1] also correlates the energy consumption
but with the processor internal events to estimate and limit the processor’s
temperature. [1,12,27] provide models for online (real-time) power prediction.
[8] presents the Intel RAPL interface, although Intel has not published in detail
how they obtain their energy model.

Category 3 is composed of empirical models at the instruction level based
on simulations [29,34]. [34] presented the first approach to estimate the energy
cost for each type of instruction. [29] extends this approach with a more fine-
grained model that is able to give accurate information during an instruction-
level simulation.

Category 4 presents empirical instruction level models, based on performance
counters [23,30]. [30] build an instruction level model of the Xeon Phi using
microbenchmarks.

Category 5 presents analytical architecture level models based on perfor-
mance counters [31,32]. [31] uses multiple linear regression between performance
counters and hardware, to estimate per-core power consumption. [32] estimates
the static and power consumption.

Finally, category 6 is composed by an empirical architecture level model
based on simulation [21]. The authors predict power via statistical models.
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Table 3. Energy consumption model suggestion for machine learning scenarios.

Goal Dataset Learning

Optimize
code

Optimize
HW

Measure Big data Small
datasets

Online
learning

Offline
learning

[23,29,
30,34].

[1,2,5,8,
12–15,19,
21–23,27,
31,32,36]

[1,2,5,8,
12–
15,19,21–
23,27,29–
32,34,36]

[1,2,8,
12–
15,19,23,
27,30–32]

[1,2,5,8,
12–
15,19,21–
23,27,29–
32,34,36]

[1,2,8,
12–
15,19,23,
27,30–32]

[1,2,5,8,
12–
15,19,21–
23,27,29–
32,34,36]

Optimize Code: Instruction-level. Optimize HW: Architecture level. Measure: All
models apply.
Big Data: not based on simulation. Small datasets: all models apply.
Online learning: PMC, but not instruction level (for real-time measurements)
Offline learning: all models apply.

5 Model Suggestion for Machine Learning Scenarios

After having described different techniques to model power consumption, we
now suggest different models based on the type of machine learning scenario. We
differentiate between 3 characteristics of a possible scenario: (i) goal, (ii) dataset
size, and (iii) online or offline learning. We have created Table 3 to summarize
which models fall into each category.

5.1 Goal

Goal refers to the goal of the researcher for using the model. We differentiate
between the following three goals: optimizing software code, optimizing hardware
platforms, and simply measuring energy consumption. If the goal is to optimize
software code towards energy efficiency, we recommend to use instruction-
level modeling techniques. As explained by [34], instruction-level approaches
give an insight of which are the instructions responsible for the highest energy
consumption. With this knowledge, the researchers can focus on mapping those
instructions to software code and optimize that part of the program to reduce
the overall energy consumption. Papers surveyed that focus on instruction-level
modeling are: [23,29,30,34].

On the other hand, if the goal is to optimize hardware, for instance to create
accelerators for deep neural networks [7], the authors can focus on architecture-
level estimation techniques. These techniques give an understanding of which
hardware components are being used in a specific computation. Papers surveyed
with an architecture-level modeling focus are: [1,2,5,8,12–15,19,21–23,27,31,32,
36].

Finally, to just measure energy consumption, any of the estimating method-
ologies can be applied, since there are no constraints on optimizing a specific
part of the system.



250 E. Garćıa-Mart́ın et al.

5.2 Dataset Size

The next characteristic refers to the characteristic of the dataset, if it is a small
dataset or a large-scale dataset (e.g. Big Data). If we encounter a Big Data sce-
nario, we recommend to model the energy consumption using techniques that
focus on direct measurements. Since big data and small data are terms that
are complicated to quantify and depend also on the context, we classify big
data as any dataset that is unfeasible to train using a simulator. Simulation
approaches introduce a significant overhead, making it difficult to analyze the
energy consumption of scenarios with large-scale datasets. On the other hand,
direct measurements are suitable for these scenarios. Modeling approaches suit-
able for large-scale datasets are: [1,2,8,12–15,19,23,27,30–32]. Small datasets
can use the same models as suggested for big datasets, plus the ones based on
simulations.

5.3 Online or Offline Learning

Our final suggestion depends on the type of learning of the task, and refers also
to simulation or direct measurement techniques. As was explained before, one
of the many advantages of using performance counters (direct measurements) is
the ability to measure the energy consumption in real-time. This is very useful
in systems such as data centers that are constantly optimizing performance (in
terms of operations/watt). It is also useful in streaming scenarios, such as sensor
networks or mobile devices. Real-time measurements allows for real-time energy
optimization based on current load. While all models are suitable for offline
learning, since there are no specific requirements on this part, only a set of those
are also suitable for online learning scenarios, thus for real-time measurements
[1,2,8,12–15,19,23,27,30–32].

In addition to Tables 1, 2, and 3, we portray Table 4. Table 4 gives a more clear
view on possible modeling choices, based on the categories defined in Table 2. For
example, we can conclude that models characterized by analytical, simulation
and architecture (category 1) are suitable for small datasets and offline learning
problems while the models in category 2 can be considered applicable for almost
any machine learning problem.

6 Case Study: Energy Estimation in Big Data Stream
Mining

We present a case study where we use the suggestions from Sect. 5, and apply
them to a specific use case. Our task for this use case is to measure energy
consumption in a big data stream mining scenario. For large-scale datasets we
need to choose a modeling approach that does not introduce overhead to obtain
the energy measurements, otherwise is not feasible when there are too many
instances. For handling a stream of data, we need to have energy estimations in
real time.
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Table 4. Machine learning suggestions mapped to the categories from Table 3

Goal Dataset Learning

Cat Opt code Opt HW Measure Big data Small
datasets

Online
learning

Offline
learning

1 [5,22,36] [5,22,36] [5,22,
36]

[5,22,
36]

2 [1,2,8,
12–15,19,
23,27]

[1,2,8,
12–15,19,
23,27]

[1,2,8,
12–15,19,
23,27]

[1,2,8,
12–
15,19,
23,27]

[1,2,8,
12–15,19,
23,27]

[1,2,8,
12–
15,19,
23,27]

3 [29,34] [29,34] [29,34]

4 [23,30] [23,30] [23,30] [23,30] [23,30]

5 [31,32] [31,32] [31,32] [31,32] [31,32]

6 [21] [21] [21] [21]

6.1 Experimental Design

In relation to the characterization explained above and the suggestions from
Sect. 5:

– Goal: Compare the energy consumption of the Very Fast Decision Tree
(VFDT) [10], with the Hoeffding Adaptive Tree (HAT) [4]. The VFDT and
HAT are decision tree classification algorithms that can analyze potentially
infinite streams of data. These algorithms obtain very similar levels of accu-
racy in comparison to offline decision trees. HAT is an extension of the VFDT
that can handle concept drift (change in the input data stream) by using the
ADWIN algorithm [3]. The goal of this case study is to show: (i) how to
measure energy consumption in real time using one of the models proposed
in this study; (ii) compare the energy consumption between the VFDT and
HAT algorithms; (iii) compare the accuracy of the VFDT and HAT algo-
rithms.

– Dataset size: Large-scale dataset with 1M instances.
– Online or offline learning: Online learning with real-time accuracy and

energy measurements.

We have used the random tree and SEA synthetic generators, available in
the stream mining framework scikit-multiflow [24]. The random tree synthetic
dataset is typically used in data stream mining scenarios and was first introduced
by the authors of the VFDT. The idea is to create a tree that randomly splits
the features (attributes) and sets a label for the leaf. The tree is then traversed
to create the different instances, based on the features at the nodes and the
class labels at the leaves. The SEA synthetic dataset was introduced by [33]
to test abrupt concept drift. The algorithms are run using the scikit-multiflow
framework. The accuracy was evaluated using the prequential evaluator, which
trains and tests the model every certain number of instances.
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Table 5. Experimental results from 10 runs. Algorithms: Very Fast Decision Tree
(VFDT), Hoeffding Adaptive Tree (HAT). Datasets: SEA and Random Tree generator.
Measurements: average of: Accuracy, Total energy, processor energy, DRAM energy.
Total energy = processor energy + DRAM energy

Alg Dataset Acc (%) Tot energy (J) Proc energy (J) DRAM energy(J)

HAT RandomTree 0.65 10487.04 10254.63 232.42

HAT SEA 0.91 3612.32 3517.08 95.25

VFDT RandomTree 0.89 5720.73 5555.49 165.24

VFDT SEA 1.00 2006.00 1943.80 62.20

Based on the type of task, and looking at Table 4, the models that match the
set {Measure, Big data, Online learning}, belong to categories: 2, 4, and 5. Thus,
by looking at Table 2, these models are either: {empirical, PMC, architecture};
{empirical, PMC, instruction}; or {analytical, PMC, architecture}.

Based on these suggestions, we have chosen a model based on PMC, the
Intel RAPL interface [8,28]. The reason for this choice, is that it matches the
requirements, and it has a tool available to make direct energy estimation mea-
surements. The tool, Intel Power Gadget1, access the performance counters of
the processor that are related to energy consumption. Intel has not published
the details of how they estimate the energy consumption from the different per-
formance counter statistics, that is why we do not provide extensive details. We
could have also used the following models: [1,2,12–15,19,23,27,30–32].

6.2 Results and Analysis

The results of the experiment are shown in Table 5. We have evaluated the
accuracy and energy consumption of running the VFDT and HAT under two
synthetically generated datasets. We can see how the HAT algorithm consumes
significantly more energy than the VFDT. This is understandable since the HAT
algorithm performs more operations than the VFDT algorithm to be able to
handle concept drift. We also output the energy consumed by the DRAM and
the processor. Most of the energy is consumed by the processor, while the DRAM
consumes three to five percent of the total energy.

We can see very similar accuracy values between both algorithms in these
datasets. However, taking a look at the SEA dataset, we can see how the VFDT
obtains higher accuracy than the HAT. These are unexpected results, since the
HAT was developed to handle concept drift, and for this example the VFDT
shows higher accuracy. We plan to investigate this further in future works.

This case study shows how our suggestions on using different estimation
approaches depending on the machine learning task can be used. Our recom-
mendation is to use an approach that has a tool available, since that simplifies

1 https://software.intel.com/en-us/articles/intel-power-gadget-20.

https://software.intel.com/en-us/articles/intel-power-gadget-20
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the measurements, and encourages the researcher to look into energy consump-
tion, not just predictive performance of the algorithm. In a real situation, once
the researcher has an understanding of the energy consumption of their algo-
rithm, the next step can involve more fine-grained results of the energy con-
sumed either at the instruction level, with instruction-level energy models, or at
the architecture level, with architecture-level energy models.

7 Conclusions and Future Work

Energy consumption is a key variable when designing machine learning algo-
rithms. However, although some research is being conducted to reduce the com-
putations of deep learning tasks [7], most of the research focuses on increasing
the predictive performance of algorithms. One of the key challenges that exist
nowadays is to measure the energy consumption of programs.

To address this challenge, we presented a survey of different approaches to
estimate energy consumption. We differentiate between approaches to optimize
hardware, and approaches to optimize software. Moreover, we presented sugges-
tions to use different approaches for specific machine learning scenarios. Finally,
we created a case study to illustrate our modeling approach, and a straight-
forward way to measure the energy in a data stream mining scenario by using
performance counters. We believe that a way to improve energy efficiency in
machine learning is by making energy estimation modeling approaches accessi-
ble to the machine learning community, our ultimate goal. Our case study has
validated that it is possible to measure energy consumption in a machine learn-
ing scenario, proposing several ways to obtain the energy consumption values.
We believe that this study brought the machine learning and computer archi-
tecture communities a step closer, in particular to achieve energy efficiency in
machine learning.

This is a preliminary survey that plans to be extended to include more estima-
tion methodologies. We intend to dig deeper into the methodologies, and match
them with the requirements of specific classes of machine learning algorithms, to
create recommendations of (energy model/machine learning task) that are more
specific.
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