
Context Delegation for Context-Based
Access Control

Mouiad Al-Wahah(B) and Csilla Farkas

University of South Carolina, Columbia, SC 29208, USA
malwahah@email.sc.edu, farkas@cec.sc.edu

Abstract. The capability to delegate access privileges is an essential
component of access control policies. We present an ontology-based con-
text delegation approach for context-based access control. Our approach
provides a dynamic and adaptive context delegation capability. The dele-
gation does not cause any change to the underlying access control policy.
We use Description logic (DL) and Logic Programming (LP) technologies
for modeling contexts, delegation and CBAC privileges. We show how
semantic-based techniques can be used to support adaptive and dynamic
context delegation for CBAC policies. We provide the formal framework
of the approach and show that it is decidable and consistent.

Keywords: Security · Access control · Authorization · Delegation ·
Description logics · OWL ontology

1 Introduction

Delegation of the privileges is an important mechanism to support dynamic and
adaptive access control in real world applications. There is a significant previous
work on Context-Based Access Control (CBAC) [1–6,10,15]. However, support
to delegate CBAC privileges is limited. For example, approaches described in
[1–4,15] do not provide any delegation services. Most of the existing delega-
tion methods are based on traditional access control models, such as Role-Based
Access Control (RBAC) models [6,7]. Methods such as attribute-based dele-
gation [8,9] and capability-based delegation [10,11] require that the underlying
access control policy is changed. Moreover, none of the methods address the issue
of context delegation when the access authorization is a context-dependent.

We propose a context delegation approach for CBAC policies. Our approach
is grounded in semantic web technologies, specifically, Web Ontology Language
(OWL) ontologies [17,18], Semantic Web Rule Language (SWRL) [12] and Pellet
reasoner [13]. The main advantages of using OWL-based technologies to repre-
sent access control are as follows: OWL ontologies provide formal framework
since they are based on Description Logics. XML documents [14], for example,
lack the formal semantics. OWL ontologies can encompass any XML represen-
tation or a Resource Description Framework (RDF) ontology. Finally, OWL-
DL ontologies have the expressivity of DLs and the properties of completeness
c© Springer Nature Switzerland AG 2019
C. Alzate et al. (Eds.): ECML PKDD 2018 Workshops, LNAI 11329, pp. 201–210, 2019.
https://doi.org/10.1007/978-3-030-13453-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13453-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-13453-2_16


202 M. Al-Wahah and C. Farkas

and decidability. OWL-DL reasoning can be provided by open-source reasoners,
such as Pellet [13]. Using SWRL rules permits the use of dynamic variables that
can not be determined during ontological policy specification. In our approach,
SWRL rules are used to instantiate and validate the value of these variables at
runtime.

The main contributions of our approach are: (1) Our method provides
dynamic and adaptive context delegation that does not modify the original access
control policy. (2) Our approach can be adopted by existing CBAC systems which
do not provide delegation services. (3) Our semantic-based delegation model sup-
ports capabilities such as checking the access control and delegation policies for
conflict and consistency, explaining inferences and helping to instantiate and
validate the variables in dynamic environments.

The remainder of this paper is organized as follows: in Sect. 2, we present the
context-based access control system modeling. Section 3 is dedicated to semantic-
based context delegation, and in Sect. 4 we conclude with suggestions for future
work.

2 Context-Based Access Control System Modeling

In this section, we give a brief overview of the Context-Based access control.
“Context” has been defined by Dey et al. [16] as “any information that is

useful for characterizing the state or the activity of an entity or the world in
which this entity operates.” In CBAC, the system administrator (or resource
owner) specifies a set of contexts and defines for each context the set of applica-
ble privileges. When an entity (a user) operates under a certain context, (s)he
acquires the set of privileges (if any) that are associated with the active context.
When (s)he changes the active context, the previous privileges are automatically
revoked, and the new privileges acquired [5]. Hence, the Context plays a crucial
role in evaluating the access privileges.

2.1 Context-Based Access Control Model

Access requests are evaluated based on the contexts associated with the subject
and the requested. The request is matched with context metadata that spec-
ify and activate the policy rule that to be enforced. We use rule-based Logic
Programming (LP) to encode context and policy rules.

(Access Control Policy (ACP) Rules): Access control policy rule is
given as a 6-tuple 〈s, sc, r, rc, p, ac〉, where s ∈ Subject, r ∈ Resource,
sc, rc ∈ Context, where sc is the subject’s context and rc is the
resource context, p ∈ Permission={“Deny”, “Permit”}, and ac ∈ Action =
{read,write, delegate, revoke}. Each rule is instantiated by an access request,
using the model ontologies and rules, and is evaluated at runtime to reach a
decision.

(Access Request (AR)): Access request is given as a triple 〈s, r, ac〉, where
s ∈ Subject, r ∈ Resource, ac ∈ Action.



Context Delegation for Context-Based Access Control 203

For example, an access request denoted as ar = 〈s, r, “read”〉, represents the
case when subject s is requesting a “read” access to a resource r. The policy
engine requests the contexts of s and r, and evaluates the permission p for the
request ar. Assume the contexts of s and r are sc and rc, respectively. If using
the contexts sc and rc, the policy engine can derive a permission, i.e., p is +, and
there is no conflict, it grants the access permission for the request. Otherwise, it
denies the request.

2.2 Ontology-Based Context Model

To model the context, we adopt a Description Logic (DL)-based method that par-
tially resembles the method adopted by Bellavista and Montanari [15]. However,
our context representation differs than that adopted by [15]. They have tightly
coupled the subject’s context (they call it the requestor context), the resource’s
context, the environmental context and the time context in one context (pro-
tection context). In our model, the subject’s context and resource’s context are
separated. To support context delegation, we modify the subject’s context only.
We represent our model using the OWL-DL ontologies, the reader is referred to
[17] and [18] for additional description on the current OWL standard.

Our context model is built around the concept of contextual attribute, infor-
mation which models contextual attributes of the physical/logical environment
such as location and temperature. Specific context subclasses can be represented
under Generic Concept Context. Each subcontext class consists of attribute val-
ues and constants. In our model, the generic context of the subject is given by
the following DL axiom:

SContext ≡ Context � (User � ∃hasID.IDentity � ∃hasRole.Role

�∃hasGroup.Group) � (Environment � ∃hasLocation.Location)
�(TElement � ∃hasT ime.T ime Interval) � ∃hasID.Identifier

A context of OnDutyNurse, is represented as follows:

OnDutyNurse ≡ Context � (User � ∃hasID.IDentity � ∃hasRole

.Role{Nurse} � ∃hasGroup.Group{InShiftNurses})�
(Environment{WorkingEnvironment} � ∃hasLocation.Location
{Hospital}) � (TElement{WorkingT ime} � ∃hasT ime{xsd : dateT ime

[≥ 2018 − 04 − 06T09 : 00 : 00,≤ 2018 − 04 − 06T17 : 00 : 00]}) � ∃hasID.{0}

Note that the concept OnDutyNurse includes all the characteristics spec-
ifications of the generic concept SContext. We call this context a reference
context. It holds the high-level context of an entity which will be used later as
a reference when we need to instantiate the active context of that entity. The
active context holds the entity context at a specific instant of time. For exam-
ple, when an entity requests an access to a resource. Active contexts are similar



204 M. Al-Wahah and C. Farkas

to their reference contexts counterparts. However, they differ in that they do
not have range values in their definitions. Active context reflects a real snapshot
of an entity’s context at a specific time instant. For example, the following DL
axiom describes a certain user context at 2018-04-06T14:23:00, which represents
2:23 pm on April 6, 2018:

OnDutyNurse{Ann} ≡ Context � (User{Ann} � ∃hasID.IDentity{Nurse505}
� ∃hasRole.Role{Nurse} � ∃hasGroup.Group{InShiftNurses})�
(Environment{WorkingEnvironment} � ∃hasLocation.Location{Hospital})
� (TElement{WorkingT ime} � ∃hasT ime.T ime Instance{xsd : dateT ime

[2018 − 04 − 06T14 : 23 : 00]}) � ∃hasID.{0}

This concept states that Ann is OnDutyNurse at time 2:23 pm on April 6,
2018, if she is a user, has a role of Nurse, belongs to a group that is called
InShiftNurses, within a WorkingEnvironment, at location Hospital and dur-
ing the WorkingT ime.

The context ontology is flexible. It can be extended or shrinked by adding
or removing subcontexts or by adding or removing contextual attributes to the
subcontexts.

3 Semantic-Based Context Delegation

The purpose of delegation is to grant/transfer access privileges from one entity,
the delegator, to another entity, the delegatee. We require that the delegator
must have the access privilege that is associated with context to be delegated.
Delegating a subset of contextual attributes may result in a number of problems.
These problems:

– Colluding [8], i.e., two entities may satisfy a policy that they could not if they
acted individually. We do not address this problem in this paper.

– Inconsistent policy, i.e., the delegated privileges are conflicting the user’s orig-
inal privileges. Our approach avoids inconsistent policies by evaluating dele-
gator’s context together with the delegatee’s context.

At the time of delegation, the delegator must have the context c that is to
be delegated to the delegatee. After the delegation is successfully completed,
delegatee can use the delegated context and the privilege(s) associated with it
to access to a resource r Our approach imposes constrains on context delegation.
The constraints may be specified by the delegator or the system security officer.
These constraints further restrict the delegation. Intuitively, if the delegatee’s
context satisfies the constraints, then the delegation is permitted. Otherwise,
the delegation will be aborted. Our model architecture is shown in Fig. 1.

(Delegation Request (DR)): Delegation request is given as a 6-tuple
〈s1, s2, r, ac,DCs,Par〉, where s1, s2 ∈ Subject and they represent the del-
egator and delegatee, respectively. r ∈ Resource, the resource to make the



Context Delegation for Context-Based Access Control 205

Fig. 1. The proposed system architecture.

delegation over, ac ∈ Action, the action and must be equal to “delegate”,
DCs ⊆ Constraint represents the set of constraints imposed by the delegator
on delegatee’s context, and Par is a finite set of delegation parameters, other
than the delegation constraints, which are specified by the delegator. Delegation
parameters, Par, are given by:

Par = (n1, v1), ..., (nm, vm) (1)

where ni represents the parameter namei and vi is the value of this parameter.
The DCs are represented as a set of pairs:

DCs = (CA1, Cons1), ...(CAn, Consn) (2)

where CAi represents an attribute i and Consi is the delegation constraints set
i (if any) that is imposed over CA by the delegator and must be satisfied by the
delegatee’s contextual attributes.

3.1 Delegation Policies

Every delegation operation is subject to predefined delegation policies. Delega-
tion policies are rules that restrict the delegation. We represent our delegation
policies in a predicate form as follows:

can delegate(s1, c1, s2, c2, Grant,DCs): subject s1 can delegate context c1
to subject s2 if s2’s context satisfies delegation constraints DCs.

can delegate(s1, c1, s2, c2, T ransfer,DCs): subject s1 can delegate context
c1 to subject s2 if s2’s context (the reference context) satisfies delegation con-
straints DCs.

can revoke(s1, s2, c1, casCaded): subject s1 can revoke the delegated context
c1 from s2 if s1 is authorized to do so, i.e., it was the delegator of c1. Note that,
the issue of cascading revoke has been studied extensively and we do not address
this issue in this paper.



206 M. Al-Wahah and C. Farkas

3.2 Delegation Operations

We assume that each delegation operation delegates only one context at a
time. If the delegator has multiple contexts (one is the instantiated context
and the others may be gained by previous delegations) and (s)he wishes to
delegate more than one context to the same delegatee, (s)he can do that
in multiple delegation operations. The delegation operation takes the form
delegate(s1, c1, s2, c2, Grant,Par).

Figure 1 shows our approach architecture. Delegator s1 delegates context c1
to delegatee s2. After checking delegation constraints satisfaction as we have
illustrated in the previous subsection, the delegation algorithm (see Algorithm
1.) creates a delegation instance with an identifier delid. The delegation instance
gets part of its values from the delegation request, namely from Par and DCs.
We define the following parameters, MaxDepth is the depth of the delgation. It
specifies the number of times the context can be delegated. This value is set by
the first delegator (isSoA = true, see Fig. 3). The isDelegatable is a Boolean
value that determines whether the context is delegatable. If isDelegatable =
false, then the algorithm automatically sets MaxDepth to 0.

3.3 Delegation Constraints

We represent delegation constraints, denoted as Cons, using Semantic Web Rule
Language safe rules (SWRL-safe). SWRL combines OWL ontologies with Horn
Logic rules, extending the set of OWL axioms to include Horn-like rules. SWRL
rules have the syntax Antecedent− >Consequent, where each Antecedent
and Consequent consists of atoms. These atoms can be of the form C(x),
P (x, y), sameAs(x, y) or differentFrom(x, y), where C is an OWL class, P is
an OWL property, and x, y are either variables, OWL individuals or OWL data
values. The Consequent atom will be true if all atoms in the Antecedent are
true.

For example, suppose that Ann has OnDutyNurse as a reference context as
has been shown in Sect. 2.2. Now suppose Ann wants to set delegation constraint
on the time contextual attribute before delegating her context (her reference
context) to another user, Alice. Alice is a lab analyst and she has the following
reference context:

OnDutyAnalyst ≡ Context � (User � ∃hasID.IDentity � ∃hasRole

.Role{LabAnalyst} � ∃hasGroup.Group{InShiftAnalysts})�
(Environment{WorkingEnvironment} � ∃hasLocation.Location
{Lab}) � (TElement{WorkingT ime} � ∃hasT ime{xsd : dateT ime

[≥ 2018 − 04 − 06T09 : 00 : 00,≤ 2018 − 04 − 06T17 : 00 : 00]}) � ∃hasID.{0}

The delegation constraint is (01 : 00pm ≥ time ≥ 10 : 00am), that is, it can only
be delegated between 10:00 am and 01:00 pm. At the time of delegation, Alice
has an active context as shown below:



Context Delegation for Context-Based Access Control 207

OnDutyAnalyst{Alice} ≡ Context � (User{Alice} � ∃hasID.IDentity{Analyst705}
� ∃hasRole.Role{LabAnalyst} � ∃hasGroup.Group{InShifAnalyst})�
(Environment{WorkingEnvironment} � ∃hasLocation.Location{Lab})
� (TElement{WorkingT ime} � ∃hasT ime.T ime Instance{xsd : dateT ime

[2018 − 04 − 06T12 : 30 : 11]}) � ∃hasID.{0}

The policy engine checks, then, if the delegation constraints are satisfied or
not. The policy engine uses the following SWRL rule to check the time con-
straint:

TimeCons(?t3) ∧ notBefore(?t3, ?cons1) ∧ swrlb : greater
ThanOrEqual(?cons1, 10 : 00) ∧ notAfter(?t3, cons2) ∧ swrlb :
lessThanOrEqual(?cons2, 01 : 00)− > satisfied(?t3),

where t3 = Time Instance is extracted from Alice’s active context and is equal
to 12 : 30 : 11 pm (on April 6, 2018), and the constraints cons1 = 10 : 00 am
and cons2 = 01 : 00 pm from the delegation constraints set by Ann.

3.4 Processing Delegation Request

Algorithm 1. illustrates the process of context delegation. The approach proceeds
as follows:

– The delegator prepares a delegation request and sends it to the policy engine.
– The policy engine parses the request and starts the delegation process.
– The policy engine extracts the delegation constraints, asks the context man-

ager for the delegator’s context, and checks if the delegator has the delegation
right.

– If the delegator is authorized, the policy engine asks the context manager for
the delegatee’s (s2) context and checks for satisfiability of the delegation.

– If the delegation is satisfiable, the policy engine creates a delegation instance,
see Fig. 2, using the delegation ontology and the parameters specified in the
delegator’s delegation request.

– The policy engine sends a request to the context manager, accompanied with
a delegation identifier, delid, to construct a generated context for s2. This
context is a copy of the delegator reference context but it is associated with
the delegatee.

– The context manager creates the generated context for s2 and associates it
with the identifier delid provided by the policy engine with the request.

– The delegatee has two contexts, the instantiated context and the generated
context.



208 M. Al-Wahah and C. Farkas

input :CBAC, Del, Ctx are CBAC, delegation, and context Ontologies. RQ is an
Access Request

output :UCtx, UDel /* Updated context and Delegation onologies */

1 RT← parse(RQ);
2 if RT = AR then
3 /* It is an access request */
4 eval(RT);
5 exit();

6 end
7 else
8 /* It is a delegation request*/;
9 〈s1, s2, r, ac,DCs,Par〉 ← dismantle(RT);

10 sc1←getContext(s1);
11 if isAuthorized(s1, sc1, r) = false then
12 output(”s1 is not authorized to access r”);
13 exit();

14 end
15 sc2←getContext(s2);
16 CAs←extractCAs(sc2);
17 T←checkSatisfiability(DCs,CAs);
18 if T = false then
19 output(”The context is not delegatable”);
20 exit();

21 end
22 else
23 UDel←createDelegationinstance(Del,〈s1, s2, r, ac,DCs,Par〉, delid);
24 UCtx←createContext(Cx2,Ctx,delid);
25 return(UDel,UCtx);
26 exit();

27 end

28 end

Algorithm 1. Context Delegation

Fig. 2. Delegation ontology. Fig. 3. Delegation instance for Bob.

Example. Suppose that we have the following policy rule: 〈s ,c1, “Ann Health
Record”, Nil, +, “read”〉 and that c1 is given by the DL axiom:

c1 ≡ User(Alice) � ∃hasRole(Analyst) � ∃hasT ime(t1) � ∃hasLocation
(HosptialLab) � ∃hasActivity(Working)



Context Delegation for Context-Based Access Control 209

Assume also that the contextual attribute t1 has a constraint, Constraint,
(08 : 0 am ≤ t1 ≤ 05 : 0 pm) and Alice’s context satisfies this constraint. Assume
now Alice intends to delegate her context c1 to Bob from 10:00 am to 01:00 pm
and this context is not delegatable. Bob has the following context:

c2 ≡ User(Bob) � ∃hasRole(Doctor) � ∃hasT ime(t2) � ∃
hasLocation(Hosptial) � ∃hasActivity(Working)

The contextual attribute t2 has the constraint (09 : 0AM ≤ t2 ≤ 03 : 0PM).
To delegate context c1 to Bob, Alice prepares a delegation request which has
the form:

〈Alice,Bob,Ann′s Health Record,“delegate”, 〈Time, (10 : 0AM ≤ t3 ≤ 01 :
0PM)〉〉

Alice sends the delegation request to the policy engine. The policy engine
asks the context manager for Bob’s context and checks for satisfiability of the
delegation. If the delegation is satisfiable, the policy engine creates a delegation
instance del1 with the entities shown in Fig. 3. The new context is similar to
Alice’s context except that it is associated with Bob.

4 Conclusion and Future Work

In this paper we have proposed an approach for context delegation for context-
based access control policies. The approach provides dynamic and adaptive
mechanism for privilege delegation and does not cause any change to the under-
lying access control policy. The approach presented in this paper is modeled
using semantic-based technologies and can be used by existing CBAC systems
which do not provide delegation capability. We have implemented the model
using real networks. We are working on extending our model by using REST-
ful web services with Java (Jersey/JAX-RS). The ontologies and some related
preliminary coding can be found on (https://github.com/Mouiad1975/Context-
Delegation).

References

1. Bhatti, R., Bertino, E., Ghafoor, A.: A trust-based context-aware access control
model for web-services. Distrib. Parallel Databases 1(18), 83–105 (2005)

2. Toninelli, A., Montanari, R., Kagal, L., Lassila, O.: A semantic context-aware
access control framework for secure collaborations in pervasive computing envi-
ronments. In: Cruz, I., et al. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 473–486.
Springer, Heidelberg (2006). https://doi.org/10.1007/11926078 34

3. Kulkarni, D., Tripathi A.: Context-aware role-based access control in pervasive
computing systems. In: 13th ACM Symposium on Access Control Models and
Technologies, pp. 113–122. ACM, Estes Park (2008)

4. Shen, H., Cheng, Y.: A semantic context-based model for mobile web services
access control. Int. J. Comput. Netw. Inf. Secur. 3(1), 18–25 (2011)

https://github.com/Mouiad1975/Context-Delegation
https://github.com/Mouiad1975/Context-Delegation
https://doi.org/10.1007/11926078_34


210 M. Al-Wahah and C. Farkas

5. Corrad, A., Montanari, R., Tibaldi, D.: Context-based access control management
in ubiquitous environments. In: 3rd IEEE International Symposium on Network
Computing and Applications, pp. 253–260. IEEE Computer Society, Washington
(2004)

6. Trnka, M., Cerny, T.: On security level usage in context-aware role-based access
control. In: 31st Annual ACM Symposium on Applied Computing, pp. 1192–1195.
ACM, Pisa (2016)

7. Zhang, L., Ahn, G.J., Chu, B.: A rule-based framework for role based delegation.
In: Proceedings of the Sixth ACM Symposium on Access Control Models and
Technologies, pp. 153–162. ACM, Chantilly (2001)

8. Servos, D., Osborn, S.L.: Strategies for incorporating delegation into attribute-
based access control (ABAC). In: Cuppens, F., Wang, L., Cuppens-Boulahia, N.,
Tawbi, N., Garcia-Alfaro, J. (eds.) FPS 2016. LNCS, vol. 10128, pp. 320–328.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51966-1 21

9. Servos, D., Osborn, S.L.: Current research and open problems in attribute-based
access control. ACM Comput. Surv. 4(49), 1–65 (2017)

10. Kagal, L., Berners-lee, T., Connolly, D., Weitzner, D.: Self-describing delegation
networks for the web. In: 7th IEEE International Workshop on Policies for Dis-
tributed Systems and Networks, pp. 205–214. IEEE Computer Society, Washington
(2006)

11. Gusmeroli, S., Piccione, S., Rotondi, D.: A capability-based security approach to
manage access control in the Internet of Things. Math. Comput. Model. 5(58),
1189–1205 (2013)

12. Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL:
a semantic web rule language combining OWL and RuleML. W3C Member Sub-
mission, World Wide Web Consortium (2004)

13. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, A.: Pellet: a practical OWL-
DL reasoner. Web Seman.: Sci. Serv. Agents World Wide Web 2(5), 51–53 (2007)

14. Parmar, V., Shi, H., Chen, S.-S.: XML access control for semantically related XML
documents. In: Proceedings of the 36th Annual Hawaii International Conference
on System Sciences, pp. 10–19 (2003)

15. Bellavista, P., Montanari, A.: Context awareness for adaptive access control man-
agement in IoT environments. Secur. Priv. Cyber-Phys.Syst.: Found. Princ. Appl.
2(5), 157–178 (2017)

16. Dey, A., Abowd, G., Salber, D.: A conceptual framework and a toolkit for support-
ing the rapid prototyping of context-aware applications. Hum.-Comput. Interact.
2(16), 97–166 (2001)

17. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
Chapman and Hall/CRC Press, New York (2009)

18. The W3C OWL Homepage. https://www.w3.org/OWL/. Accessed 4 Feb 2018

https://doi.org/10.1007/978-3-319-51966-1_21
https://www.w3.org/OWL/

	Context Delegation for Context-Based Access Control
	1 Introduction
	2 Context-Based Access Control System Modeling
	2.1 Context-Based Access Control Model
	2.2 Ontology-Based Context Model

	3 Semantic-Based Context Delegation
	3.1 Delegation Policies
	3.2 Delegation Operations
	3.3 Delegation Constraints
	3.4 Processing Delegation Request

	4 Conclusion and Future Work
	References




