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Abstract. Recently, neural networks have seen a surge in their adop-
tion due to their ability to provide high accuracy on various tasks. On
the other hand, the existence of adversarial examples has raised sus-
picions regarding the generalization capabilities of neural networks. In
this work, we focus on the weight matrix learned by the neural net-
works and hypothesize that an ill-conditioned weight matrix is one of
the contributing factors in the neural network’s susceptibility towards
adversarial examples. For ensuring that the learned weight matrix’s con-
dition number remains sufficiently low, we suggest using an orthogonal
regularizer. We show that this indeed helps in increasing the adversarial
accuracy on MNIST and F-MNIST datasets.
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Deep learning

1 Introduction

Deep learning models have performed remarkably well in several domains such as
computer vision [20–22], natural language processing [24,25] and speech recog-
nition [23]. These models can achieve high accuracy in various tasks and hence
their recent popularity. Due to their adoption in diverse fields, the robustness
and security of Deep Neural Networks become a major issue. For the reliable
application of Deep Neural Networks in the domain of security, the robustness
against adversarial attacks must be well established. In recent work, it was shown
that Deep Neural Networks are highly vulnerable to adversarial attacks [15]. The
adversarial attacks are hand-crafted inputs on which the neural network behaves
abnormally. Generally, in these kind of attacks, a small magnitude of calculated
noise is added to an input instance of training data to make the model output
a significantly different result had it been on the unaltered input instance. In
the case of images, some of the perturbations are so subtle that the adversar-
ial and original training images are humanly indistinguishable. The existence of
adversarial examples compels one to think about the generalization and learning
capabilities of neural networks.
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There have been several speculative explanations regarding the existence of
adversarial examples. Some of the explanations attribute this to the non-linearity
of deep neural networks, but recently in [14] the authors showed that linear
behavior in high dimensional spaces is sufficient to produce adversarial examples
in neural networks. Our work further builds upon this explanation by performing
this linear computation of neural networks in a high dimension close to a well-
conditioned space for increased stability against malicious perturbations.

2 Related Work

Various adversarial attacks and protection methods have been proposed in the
existing literature. Some of the well-known attacks are the Fast Gradient Sign
Method (FGSM) [14], Basic Iterative Method (BIM) [4], RAND+FGSM [17],
DeepFool [9], Black-Box Attack [4,5], Jacobian-Based Saliency Map Attack [16]
and the L-BFGS Attack [15].

We are briefly going to describe some of the attacks that were used in our
experiments. In a neural network, let θ denote its parameters, x be the input to
the model from the domain [0, 1]d, y be the true output label/value for input x
and J(θ, x, y) be the cost function.

2.1 Fast Gradient Sign Method

In the FGSM attack [14] the adversarial example is constructed by using:

xadv = x + εsign(∇xJ(θ, x, y))

Here, xadv is the adversarial example generated using input x and ε is the vari-
able reflecting the magnitude of perturbation that is being introduced while
constructing the adversarial example. Some of the adversarial images generated
from the MNIST dataset using this attack for different ε values are shown in
Fig. 1.

(a) Original (b) ε = 0.1 (c) ε = 0.2

(d) ε = 0.3

Fig. 1. (a) Original test sample images which the network correctly classifies. (b), (c),
(d) represents a sample of the corresponding adversarial images generated via Fast
Gradient Sign Method (FGSM) for different ε values. For ε values of 0.1, 0.2 and 0.3,
the model mis-classifies 1, 4 and all 5 out of 5 numbers present in the above images in
(b), (c) and (d) respectively.



Neural Networks in an Adversarial Setting and Ill-Conditioned Weight Space 179

2.2 Basic Iterative Method

The BIM [4] is an extension of FGSM where adversarial examples are crafted by
applying FGSM multiple times with small step size(α). Clipping of pixel values
of intermediate results is done to ensure that each pixel perturbation magnitude
doesn’t exceed ε. Here, n denotes the number of iterations to be applied.

xadv
0 = x

xadv
n+1 = Clipx,ε{xadv

n + αsign(∇xJ(θ, xadv
n , y))}

2.3 RAND+FGSM

The RAND+FGSM [17] is a modification of FGSM where the FGSM is applied
on the data point x

′
which is obtained by adding a small random perturbation

of step size α to the original data point x.

x
′
= x + αsign(N (0d, Id))

xadv = x
′
+ (ε − α)sign(∇x′ J(θ, x

′
, y))

2.4 Practical Black-Box Attack

Black-box attacks [4,5] do not require any prior information regarding the struc-
ture of architecture or the parameters learned by the target model. As the name
suggests, only the labels corresponding to inputs are required to construct the
adversarial examples. These attacks are based on the premise of transferability
of adversarial examples between different architectures of a deep neural network
trained on the same data [14,15]. One of the black-box attacks [5] comprises
of training a local substitute model to simulate the target model. In this app-
roach, it is assumed that the attacker has a small set of inputs which were drawn
from the same input distribution as that of the training data used for the target
model. The training data of the substitute model consists of synthetically gen-
erated data using the given small set of inputs. The labels for this training data
is obtained by querying the target model. A sample of adversarial generated
examples of F-MNIST dataset for different ε values are shown in Fig. 2.

As the types of adversarial attacks are increasing in number, so are the
defensive techniques to protect deep learning models. There is no general defense
mechanism which guarantees robustness against all of the existing attacks. Some
of these adversarial defense techniques include ideas such as training on adver-
sarial examples [14], using ensemble models [1,17], adding entropy regularizer
on the output probabilities [6] and distillation [7].

The property of orthogonality has a huge appeal in mathematical operations
due to the inherent stability that comes with it. Random orthogonal initial con-
dition on weight matrices in neural networks has been shown to retain finite
learning speed even in the case of deep neural architecture [18]. Furthermore,
retaining this orthogonal property of weight matrix has helped in fixing the
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(a) Original (b) ε = 0.05 (c) ε = 0.1

(d) ε = 0.15

Fig. 2. (a) Original test sample images which the network correctly classifies. (b), (c),
(d) represent a sample of the corresponding adversarial images for different ε values
generated via the black box attack.

problem of exploding and vanishing gradients, particularly in the case of Recur-
rent Neural Networks enabling them to learn long-term dependencies [10–12]. In
order to learn rich internal representation autoencoders have been used with a
regularizer that encourage the hidden layers to learn orthogonal representation
of input [2]. In domain adaptation techniques, some improvements were made
by learning dissimilar private and shared representation. It was obtained by
enforcing soft orthogonality optimization constraints on the private and shared
representations [3]. Therefore, orthogonality constraints have been used for an
array of tasks which span from learning rich representation in latent space to
fixing the problem of exploding and vanishing gradients. We will see that it also
has utility in facilitating reduction of condition number of the neural network’s
weight space in an adversarial setting.

3 Theory

The condition number of a matrix or linear system [26] measures the sensitivity
of the matrix’s operation in the event of introducing perturbation to inputs or
the resulting value. Condition number is a norm dependent property and in this
paper, we will focus on 2-norm. Orthogonal matrix has a condition number of 1
whereas singular matrix has an infinitely large condition number.

Matrices that have a condition number close to that one are said to be “well-
conditioned” and those which are close to the singular matrix (i.e., have large
condition number) are said to be “ill-conditioned.” The condition number of a
matrix is also representative of its sensitivity in an inverse computation

The condition number of a Matrix A is defined as:

κ(A) = ||A||.||A−1|| (1)

where the norm of the matrix is defined by

||A|| = sup
x�=0

||Ax||
||x||

Consider a system of linear equation.

Ax = b (2)
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The effect of the perturbation in x and b can be described by using condition
number of A.

A(x + δx) = b + δb (3)

||δx||
||x|| ≤ κ(A)

||δb||
||b|| (4)

We can use this analysis to consider the case of a fully connected layer in
neural network. As the intermediate computations consists of linear equations:

Wx + b = p (5)

where W is the weight matrix, b are the biases, x is the input signal and p is the
output before passing it through activation layer.

Combining b and p as b1 = p − b, we get:

Wx = b1 => W−1b1 = x (6)

As the condition number of a matrix and its inverse are the same, given any
perturbation in x, b1, using (2) and (4) we can write:

||δb1||
||b1|| ≤ κ(W )

||δx||
||x|| (7)

As adversarial examples are malicious perturbation added to the input (x) of
the model, improving the condition number of the weight space (κ(W )) limits
the changes in the intermediate-output (b1), which can seen from (7).

Similarly, this can be extended to convolutional neural networks by focus-
ing on the condition number of the matrix formed where each row denotes the
filter’s weight optimized by the neural network. For example, in a particular
convolutional neural network with parameters (Kx,Ky, Cin, Nf ) where

– Kx - is the x-dimension of the filter
– Ky - is the y-dimension of the filter
– Cin - is the number of input channels of the input image
– Nf - is the number of filters used in the model.

One can visualize these learnable parameters of network as a matrix having
dimension ((Kx ×Ky ×Cin), Nf ) and carry out the same analysis as done earlier
in the case of the fully connected layer.

4 Proposed Solution

As we have seen in the previous section, the condition number of the weight
matrix can play an important role in deciding the amount of change observed
in the intermediate layer’s output while dealing with perturbed input. Hence an
effort in reducing the condition number of weight space of the neural network
should consequently increase the neural network’s robustness in an adversarial
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setting. To achieve our goal of pushing the weights towards well-conditioned
space, we propose using an orthogonal regularizer as a heuristic inspired by the
fact that orthogonal matrices have the ideal condition number. While training
we propose adding an extra loss reflecting the penalty for ill-conditioned weight
denoted by

Lcond = λ(WT .W − I)

Here W is the l2-normalized weight matrix for a particular layer of the neural
network, λ is the condition loss regularization hyperparameter and I is the iden-
tity matrix of suitable dimension. So for a classification task the total loss to be
optimized becomes:

Ltotal = Lclassification + Lcond

This Lcond is different for each layer and can be applied over all the layers of
neural network with different settings of λ as required.

5 Experiments and Results

To understand the effectiveness of our approach we consider two different types
of adversarial attacks that are used for neural networks:-

– White box attacks - Here the attacker has the complete knowledge of the
model architecture that was used for training as well as the data with which
the model was trained. The attacker can then use the same model architecture
and training data to train the model and then generate adversarial examples.

– Black box attacks - Here the attacker does not know the model architecture
used to train for the desired task. It also does not have access to the data
used for training. To generate adversarial examples the attacker thus needs to
train a substitute network and generate its own data. The attacker can, how-
ever, query the actual model to get the labels corresponding to the generated
training set.

We evaluated our approach on the FGSM, RAND+FGSM and BIM white
box attacks as well as FGSM black box attack. To verify if our approach can
be applied along with approaches that aim to minimize the risk of adversarial
attack, we applied our method on adversarial training and evaluated the results.

We conducted all our experiments on two different datasets: the MNIST
handwritten dataset and the Fashion-MNIST clothing related dataset [19]. Both
the datasets consist of 60,000 training images and 10,000 test images. The images
are gray-scale of size 28×28. For all the white box experiments we generated
adversarial examples from the test set consisting of 10k images.

5.1 Results on White Box Attacks

In this section we present results on white box attacks using three different
methods:- FGSM, RAND+FGSM and BIM.
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FGSM Attack. We tested our approach on the following two neural network
architectures:-

– A convolutional neural network (A) with 2 convolutional layers and 2 fully
connected layers (dropout layer after first fully connected layer is also present)
with ReLU activations. Max pooling (2×2 pool size and a 2×2 stride) was
applied after every convolution layer. The CNN layer weights were of shape
[5, 5, 1, 32] and [5, 5, 32, 64] respectively and the fully connected layer were
of sizes [3136, 1024] and [1024, 10].

– A fully connected neural network (B) with 2 hidden units each consisting of
256 hidden units and ReLU activation.

We also trained the network using adversarial training (ε = 0.3) and further
applied our approach on top of it to check if our method can be used on top of
other methods for preventing an adversarial attack or not.

The regularization parameter(λ) used in our approach for each of the dif-
ferent layers was selected by observing the condition number of each layer by
observing orthogonal regularization loss during training. Layers having higher
condition numbers were assigned larger values of λ compared to those having low
condition numbers. We stress here that the hyperparameter λ was chosen not
by the adversarial accuracy of the model on the test set but rather by condition
numbers of layers and the validation set classification accuracy. We need to take
into consideration the validation set classification accuracy because larger values
of λ lead to a reduction in accuracy.

We tested the FGSM attack over the MNIST dataset for different values of ε
and the results are shown in Tables 1 and 3 for the two network architectures. As
can be inferred from the results our approach improves the adversarial accuracy
under both the cases:- when directly applied as a regularizer and when applied
as a regularizer over the adversarial training approach. The second result is
interesting because it suggests the possibility of further improvement when our
method is augmented with other techniques that have been proposed to improve
adversarial accuracy. We have not shown the performance of network B for high
values of ε because the performance of the network becomes already very bad
even at ε = 1.5 for adversarial examples.

Table 1. Adversarial accuracy for FGSM attack over MNIST dataset for network A

ε Normal Regz. Adv. tr. Adv. tr.+Regz.

0.05 0.9486 0.9643 0.9752 0.9768

0.1 0.7912 0.8759 0.9527 0.9656

0.15 0.4804 0.6753 0.9352 0.9678

0.2 0.1903 0.3847 0.9212 0.9741

0.25 0.058 0.1484 0.9008 0.9787

0.3 0.0238 0.0276 0.8729 0.979



184 A. Sinha et al.

Table 2. Adversarial accuracy for FGSM attack over F-MNIST dataset for network A

ε Normal Regz. Adv. tr. Adv. tr.+Regz.

0.05 0.5013 0.5559 0.7728 0.7713

0.1 0.2128 0.274 0.6926 0.7073

0.15 0.0658 0.1007 0.6261 0.6535

0.2 0.01 0.0227 0.5564 0.5862

0.25 0.0026 0.0022 0.4763 0.5071

0.3 0.0004 0.0003 0.4153 0.4454

Similar experiments were performed over the F-MNIST dataset for the two
different network architectures and the results have been shown in Tables 2 and
4. We see that under normal training the adversarial accuracy drops very low
for high values of ε and our approach also does not improve the accuracy under
these settings.

Table 3. Adversarial accuracy for FGSM attack over MNIST dataset for network B

ε Normal Regz. Adv. tr. Adv. tr.+Regz.

0.025 0.8895 0.9194 0.9387 0.9449

0.05 0.5819 0.7256 0.8345 0.8612

0.075 0.237 0.3872 0.6063 0.6903

0.1 0.0731 0.1603 0.3362 0.4446

0.125 0.032 0.0539 0.1527 0.2254

0.15 0.0198 0.017 0.0689 0.0998

Table 4. Adversarial accuracy for FGSM attack over F-MNIST dataset for network B

ε Normal Regz. Adv. tr. Adv. tr.+Regz.

0.025 0.5459 0.5844 0.7592 0.7521

0.05 0.225 0.2928 0.5816 0.597

0.075 0.0787 0.1088 0.3994 0.4398

0.1 0.0295 0.0319 0.236 0.2875

0.125 0.0114 0.005 0.1285 0.1751

0.15 0.0041 0.0008 0.0613 0.0897

We have shown the maximum of the condition number of different layers in
the network in Table 5. The condition number of the layers were calculated via
the matrix two norm. As can be seen from the table, adding the loss correspond-
ing to the orthogonality of the weights does indeed reduce the condition number
of the weight matrices.
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Table 5. Max condition number of network weights

Dataset Net Normal Regz. Adv.tr. Adv.tr.+Regz.

MNIST A 17.56 3.73 121.78 23.49

B 995.70 251.19 1192.47 14.88

F-MNIST A 15.94 5.63 114.30 23.14

B 513.33 49.01 875.87 26.48

To see how our approach affects the test accuracy of the network, we have
shown the result in Table 6. As can be seen from the table, our method does
not much affect the test accuracy for both the two datasets. The same is true
even when the approach is applied on top of adversarial training method. Thus
we can say that our method does improve the adversarial performance of the
networks without any compromise with the test accuracy.

Table 6. Test accuracy of networks under different settings

Dataset Net Normal Regz. Adv.tr. Adv.tr.+Regz.

MNIST A 0.9916 0.9916 0.9917 0.9907

B 0.9777 0.9789 0.9803 0.979

F-MNIST A 0.9038 0.9016 0.8892 0.8852

B 0.8898 0.8847 0.8841 0.8814

RAND+FGSM and BIM Attack. For the RAND+FGSM attack a Gaussian
noise was added to the examples before subjecting them to the FGSM attack.
The value of α was kept to be 0.5 and experiments were conducted for the two
datasets for different ε values. The results have been shown in Table 7.

For the BIM attack α was kept to be 0.025 and the value of n was 2, 3, 6,
9 corresponding to the different ε values. The results for the experiment have
been shown in Table 8. The results show that our method makes the network be
robust to all the three different types of adversarial attack without affecting the
test accuracy performance of network.

5.2 Results on Black Box Attacks

For the black box attack we created a substitute network with the following
architecture:-
A fully connected neural network (C) with 2 hidden units each consisting of 200
hidden units and ReLU activation.
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Table 7. Adversarial accuracy for RAND+FGSM for network A

Dataset ε Normal Regz.

MNIST 0.05 0.9911 0.9915

0.1 0.9411 0.9587

0.15 0.7582 0.8536

0.2 0.4171 0.6183

0.25 0.1333 0.3186

0.3 0.0379 0.0983

F-MNIST 0.05 0.896 0.8944

0.1 0.4686 0.5223

0.15 0.1879 0.2417

0.2 0.05 0.0805

0.25 0.0065 0.0135

0.3 0.0017 0.0008

Table 8. Adversarial accuracy for BIM for network A

Dataset ε Normal Regz.

MNIST 0.025 0.9433 0.9622

0.05 0.8575 0.9173

0.1 0.2047 0.4635

0.15 0.007 0.0322

F-MNIST 0.025 0.4737 0.5287

0.05 0.2816 0.343

0.1 0.0172 0.0306

0.15 0 0.0001

The substitute network had access to only 150 test samples initially, and
new data was augmented to it for n = 6 times via the Jacobian based data
augmentation technique. Network A was used as the classifier for this attack.
Adversarial examples were generated using the trained substitute network which
was then subsequently fed for classification to the original classifier.

The results over the generated adversarial samples are shown in Table 9 for
the two datasets MNIST and F-MNIST. As can be seen from the results, our
approach does improve the performance of the network over adversarial examples
generated from the substitute network across different values of ε for both the
datasets.
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Table 9. Adversarial accuracy under black box attack

Dataset ε Normal Regz.

MNIST 0.05 0.9879 0.9887

0.1 0.9817 0.984

0.15 0.9686 0.9765

0.2 0.9481 0.9624

0.25 0.9076 0.9359

0.3 0.8256 0.8752

F-MNIST 0.05 0.8565 0.8667

0.1 0.7858 0.8161

0.15 0.6924 0.7456

0.2 0.577 0.6453

0.25 0.459 0.5328

0.3 0.3505 0.4319

6 Discussion

In the previous section, we showed results as to how reducing the condition
number of weight matrices via forcing them to align orthogonally helped in
performance over adversarial examples. In this section, we try to see some other
issues that a network could face because of the high condition number of its
intermediate layers.

The condition number of a matrix in the case of 2-norm becomes the ratio
of largest to smallest singular value. Consider a square matrix A of n dimension
having the singular value decomposition (SVD) [27] as A = UΣV T . Rewriting
the SVD of A as a combination of n equations where i ∈ {1, 2, .., n} we have:

Avi = σiui (8)

κ(A) =
σ1

σn
(9)

If the matrix is ill-conditioned, then one of the following is the case: either σ1 is
high or σn is low or both. From (8) and (9), we can observe by perturbing the
input in the direction of vn and applying it to A produces the least amount of
change in output. In fact vn forms the least square solution of Ax = 0. Hence,
in an ill-conditioned weight matrix of the neural network with a sufficiently low
value of σn, perturbing the input in the direction of the right singular vector vn

will produce minimum change magnitude-wise when applied over the matrix.

A(x + λvn) = Ax + λ(σnun) (10)

Leveraging this observation in a fully connected neural network, we generated
data points which were significantly different from the original data point taken
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from the MNIST dataset by keeping a reasonably high value of λ. The model was
still predicting it to be of the same class as that of the original data point. These
artificially generated data points can be thought of as other types of adversarial
examples which are visibly different from the original data points, but the models
label them the same with high confidence. Examples of the generated examples
along with their predictions can be seen in Fig. 3. In the same architecture of
fully connected network with condition number penalty applied, a significant
drop in the confidence of labeling was observed. Hence, we can say that more
sensible results are generated when models are regularized while keeping the
condition number of the weight in check.

(a) Original (b) Unclipped
perturbed

(c) Clipped
perturbed

Fig. 3. (a) Original test sample image of class 0 which the network correctly classifies
with high confidence of 0.999 (b) represents the unclipped perturbed test sample image
in the direction of minimum eigenvector with λ = 20 as mentioned in (10). The confi-
dence of classification for class 0 for the original and regularized classifiers were 0.999
and 0.105 respectively.(c) represents the clipped(between 0 and 1) perturbed test sam-
ple image generated with the same configuration as that of (b). For (c) the confidence
of classification for class 0 in case the of original and regularized classifier were 0.916
and 0.454 respectively.

7 Conclusion and Future Direction

In this paper, we have explored the relationship between the condition number of
the weights learned by a neural network, and its vulnerability towards adversar-
ial examples. We have shown theoretically that well-conditioned weight space of
neural networks is relativity less prone to be fooled by adversarial examples using
inferring bounds on the change in output concerning input in neural layers. We
have validated our theory on various adversarial techniques and datasets. One
of the heuristics that was used to control the condition number of weight space
was orthogonal regularizer, but any other approach that influences the condition
number in a positive light should also work. An incorporation of the proposed
technique should help in creating more robust neural networks, especially in
security-related fields. In future work, we would like to explore adversarial gen-
eration techniques and feasibility of preconditioning in the context of neural
networks.
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