Skip to main content

Elastic Buckling of Laminated Beams, Plates, and Cylindrical Shells

  • Chapter
  • First Online:
Thin-walled Laminated Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 106))

Abstract

In this chapter, we study the elastic buckling of thin-walled elastic laminated structures. As a preliminary, the simplest problems on stability of laminated beams and plates are considered in Sect. 3.1. Then, using the derived in Chapt. 2 governing equations based on the equivalent single-layer model, some classes of problem on the buckling of thin elastic laminated cylindrical shells under different loading (external pressure, axial compression and torsion) are considered. In Sect. 3.2, the buckling of a medium-length laminated cylindrical shell under external pressure is investigated. As the special case, using the asymptotic Tovstik’s method, the localized buckling modes of a thin non-circular cylindrical shell with an oblique edge are studied. The problems on buckling of axially compressed laminated cylinders are considered in Sect. 3.3; a cylindrical shell under action of non-uniform axial forces is also examined. Finally, Sect. 3.4 is devoted to stability of laminated shells under axial torsion. In all cases, the influence of boundary conditions and transverse shears on the critical values of the buckling load parameter is analyzed. To verify the applied equivalent single-layer model, the finite-element analysis is performed for some of problems. We also show that the application of smart materials (i.e., magnetorheological elastomers) for assembling sandwiches or multi-layered thin cylinders allows to increase significantly the total stiffness of a structure and the critical buckling load as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfutov NA (2000) Stability of Elastic Structures. Foundations of Engineering Mechanics, Springer, Berlin, Heidelberg

    Book  MATH  Google Scholar 

  • Alumae NA (1954) Critical load of a long cylindrical circular shell under torsion (in Russ.). Prikl Mat Mech 18(1):27–34

    Google Scholar 

  • Anastasiadis JS, Simitses GJ (1993) Buckling of pressure-loaded, long, shear deformable, cylindrical laminated shells. Composite Structures 23(3):221–231

    Article  Google Scholar 

  • Batdorf SB (1947) A simplified method of elastic stability analysis for thin cylindrical shells. I. Donnell’s equations. NACA Techn Note 1341, NACA

    Google Scholar 

  • Batdorf SB, Stein M, Schildcrout M (1947) Critical stress of thin-walled cylinders in torsion. NACA Techn. Note 1344, NACA

    Google Scholar 

  • Carrera E (1999) Multilayered shell theories accounting for layerwise mixed description. Part 1: Governing equations. AIAA J 37(9):1107–1116

    Article  Google Scholar 

  • Carrera E (2001) Developments, ideas, and evaluations based upon Reissners mixed variational theorem in the modeling of multilayered plates and shells. Applied Mechanics Review 54(9):301–329

    Article  Google Scholar 

  • Coburn BH, Weaver PM (2016) Buckling analysis, design and optimisation of variable-stiffness sandwich panel. International Journal of Solids and Structures 96(1):217–228

    Article  Google Scholar 

  • Darevskiy VM (1957) Stability of cylindrical shell under simultaneous action of torsion torques and normal pressure (in Russ.). Izvestia AN SSSR Otdel techn nauk (11):137–147

    Google Scholar 

  • Donnel LH, Wan CC (1950) Effect of imperfections on the buckling of thin cylinders and columns under axial compression. Trans ASME Journal of Applied Mechanics 17(1):73–83

    Google Scholar 

  • Donnell LH (1934) A new theory for the buckling of thin cylinders under axial compression and bending. Trans of ASME Aeronautical Engineering 56(7):795–806

    Google Scholar 

  • Donnell LH (1976) Beams, Plates and Shells. McGraw-Hill Inc, New York

    Google Scholar 

  • Eisenträger J, Naumenko K, Altenbach H, Meenen J (2015) A user-defined finite element for laminated glass panels and photovoltaic modules based on a layer-wise theory. Composite Structures 133:265–277

    Article  Google Scholar 

  • Euler L (1759) Sur la force des colonnes. Mémoires de l’Acadèmie de Berlin 13:252–282

    Google Scholar 

  • Feinstein G, Chen YN, Kempner J (1971a) Buckling of clamped oval cylindrical shells under axial loads. AIAA Journal 9(9):1733–1738

    Article  Google Scholar 

  • Feinstein G, Erickson B, Kempner J (1971b) Stability of oval cylindrical shells. AIAA Journal 11(11):514–520

    Article  Google Scholar 

  • Filippov SB (1999) Theory of Joined and Stiffened Shells (in Russ.). St. Petersburg Univ. Press, St. Petersburg

    Google Scholar 

  • Firer M, Sheinman I (1995) Nonlinear analysis of laminated non-circular cylindrical shells. International Journal of Solids and Structures 32(10):1405–1416

    Article  MATH  Google Scholar 

  • Gabbert U, Altenbach J (1990) COSAR - A reliable system for research and application (in Germ.). Technische Mechanik 11(3):125–137

    Google Scholar 

  • Gol’denveizer AL (1961) Theory of Thin Elastic Shells. International Series of Monograph in Aeronautics and Astronautics, Pergamon Press, New York

    Google Scholar 

  • Grigolyuk EI, Kabanov VV (1978) Stability of Shells (in Russ.). Nauka, Moscow

    Google Scholar 

  • Grigolyuk EI, Kulikov GM (1988a) General direction of development of the theory of multilayered shells. Mech Compos Mater 24:231–241

    Google Scholar 

  • Grigolyuk EI, Kulikov GM (1988b) Multilayered Reinforced Shells. Calculation of Pneumatic Tires (in Russ.). Mashinostroenie, Moscow

    Google Scholar 

  • Grover N, Maiti DK, Singh BN (2013) A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates. Compos Struct 95:667–675

    Article  Google Scholar 

  • Han JH, Kardomateas GA, Simitses GJ (2004) Elasticity, shell theory and finite element results for the buckling of long sandwich cylindrical shells under external pressure. Composites: Part B 35:591–598

    Article  Google Scholar 

  • Hutchinson JW (1968) Buckling and initial postbuckling behaviour of oval cylindrical shells under axial compression. Trans ASME Journal of Applied Mechanics 35(1):66–72

    Article  Google Scholar 

  • Jaunky N, Knight Jr N (1999) An assessment of shell theories for buckling ofcircular cylindrical laminated composite panels loaded inaxial compression. International Journal of Solids and Structures 36(25):3799–20

    Article  MATH  Google Scholar 

  • von Kármán T, Tsien HS (1941) The buckling of thin cylindrical shells under axial compression. Journal of Aeronautical Science 8(6):303–312

    Article  MathSciNet  MATH  Google Scholar 

  • Kempner J, Chen Y (1964) Large deflections of an axially compressed oval cylindrical shell. In: In: Proceedings of the 11th International Congress on Applied Mechanics, Springer-Verlag, Berlin, pp 299–306

    Chapter  Google Scholar 

  • Kempner J, Chen YN (1967) Buckling and postbuckling of an axially compressed oval cylindrical shell. In: In: Symposium on the Theory of Shells to Honor Lloyd H. Donnell, McCuthan Publishers Co., pp 141–183

    Google Scholar 

  • Kheirikhah MM, Khalili SMR, Fard KM (2012) Biaxial buckling analysis of soft-core composite sandwich plates using improved high-order theory. European Journal of Mechanics - A/Solids 31(1):54–66

    Article  MathSciNet  MATH  Google Scholar 

  • Kim KD (1996) Buckling behaviour of composite panels using the finite element method. Composite Structures 36(1–2):33–43

    Article  Google Scholar 

  • Koiter WT (1967) On the Stability of Elastic Equilibrium. Report TT F 10-833, NASA

    Google Scholar 

  • Korchevskaya E, Mikhasev G, Marinkovic D, Gabbert U (2003) Buckling and vibrations of composite laminated cylindrical shells under axial load. In: Proc. of "6th Magdeburg Days of Mechanical Engineering", Otto-von-Guericke-University Magdeburg, Logos, Berlin, pp 183–189

    Google Scholar 

  • Li LY (1990) Influence of loading imperfections on the stability of an axially compressed cylindrical shell. Thin-Walled Structures 10(3):215–220

    Article  Google Scholar 

  • Li ZM, Lin ZQ (2010) Non-linear buckling and postbuckling of shear deformable anisotropic laminated cylindrical shell subjected to varying external pressure loads. Comp Struct 92(2):553–567

    Article  Google Scholar 

  • Loo TT (1954) Effects of large deflections and imperfections on the elastic buckling of cylinders under torsion and axial compression. In: Proc. of the 2nd US national congress on applied mechanics, pp 345–357

    Google Scholar 

  • Lopatin A, Morozov E (2015) Buckling of the composite sandwich cylindrical shell with clamped ends under uniform external pressure. Composite Structures 122:209–216

    Article  Google Scholar 

  • Lorenz R (1908) Achsensymmetrische Verzerrungen in dünnwandingen Hohlzzylindern (in Germ.). Zeitschrift des Vereines Deutscher Ingenieure 52(43):1706–1713

    Google Scholar 

  • Lorenz R (1911) Die nicht achsensymmetische Knickung dünnwandiger Hohlzylinder (in Germ.). Physical Zeitschrift 12(7):241–260

    Google Scholar 

  • Mao R, Lu CH (1999) Buckling analysis of a laminated cylindrical shellunder torsion subjected to mixed boundary conditions. International Journal of Solids and Structures 36(25):3821–3835

    Article  MATH  Google Scholar 

  • Mao R, Lu G (2002) A study of elastic-plastic buckling of cylindrical shells under torsion. Thin-Walled Structures 40(12):1051–1071

    Article  Google Scholar 

  • Meyers CA, Hyer MW (1996) Response of elliptical composite cylinders to axial compression loading. Mechanics of Advanced Materials and Structures 6(2):169–194

    Article  Google Scholar 

  • Mikhasev G (2018) Thin laminated cylindrical shells containing magnetorheological elastomers: Buckling and vibrations. In: Pietraszkevich W, Witkowski W (eds) Shell Structures: Theory and Applications, CRC Press. Taylor & Francis Group, London, vol 4, pp 259–262

    Google Scholar 

  • Mikhasev G, Mlechka I (2014) On influence of boundary conditions and transverse shear on buckling of thin laminated cylindrical shells under external pressure. Facta Univesitatis Series: Mechanical Engineering 12(2):95–106

    Google Scholar 

  • Mikhasev G, Mlechka I (2018) Localized buckling of laminated cylindrical shells with low reduced shear modulus under non-uniform axial compression. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 98(3):491–508

    Article  MathSciNet  Google Scholar 

  • Mikhasev G, Seeger F, Gabbert U (2001a) Local buckling of composite laminated cylindrical shells with oblique edges under external pressure: asymptotic and finite element simulation. Technische Mechanik 21(1):1–12

    Google Scholar 

  • Mikhasev G, Korchevskaya E, Gabbert U, Marinkovic D (2004) Local buckling, stationary and non-stationary vibrations of the composite laminated shells having the weakest spots. In: Proc. of "Fourth International Conference on Thin-Walled Structures, ICTWS", London, pp 769–776

    Google Scholar 

  • Mikhasev GI, Botogova GI (2017) Effect of edge shears and diaphragms on buckling of thin laminated medium-length cylindrical shells with low effective shear modulus under external pressure. Acta Mechanica 228(6):2119–2140

    Article  MathSciNet  MATH  Google Scholar 

  • Mikhasev GI, Tovstik PE (1990) Stability of conical shells under external pressure. Mech Solids 25(4):106–119

    Google Scholar 

  • Mikhasev GI, Zgirskaya OM (2001) Local buckling of thin laminated cylindrical shell under non-uniform axial load (in Russ.). Vestnik Vitebsk Univ 4(22):90–93

    Google Scholar 

  • Mikhasev GI, Seeger F, Gabbert U (2001b) Comparison of analytical and numerical methods for the analysis of buckling and vibrations of composite shell structures. In: Proc. of "5th Magdeburg Days of Mechanical Engineering", Otto-von-Guericke-University Magdeburg, Logos, Berlin, pp 175–183

    Google Scholar 

  • von Mises R (1914) Der kritische Aussendruck zylindrischer Rohre (in Germ.). VDI Zeitschrift 58(19):750–755

    Google Scholar 

  • Nash WA (1957) Buckling of initially imperfect cylindrical shells subjected to torsion. Trans ASME J Appl Mech 24:125–130

    Google Scholar 

  • Nguyen TN, Thai CH, Nguyen-Xuan H (2016) On the general framework of high order shear deformation theories for laminated composite plate structures: A novel unified approach. Int J Mech Sci 110:242–255

    Article  Google Scholar 

  • Papkovich PF (1929) Design formulas for a stability test of a cylindricaal shell of a submarine strength body (in Russ.). Bul nauchno-tekh kom UMVS RKKA 6(2):113–123

    Google Scholar 

  • Patel BP, Munot CS, Gupta SS, Sambandam CT, Ganapathi M (2004) Application of higher-order finite element for elastic stability analysis of laminated cross-ply oval cylindrical shells. Finite Elements in Analysis and Design 40(9-10):1083–1104

    Article  Google Scholar 

  • Reddy JN (1993) An evaluation of equivalent-single-layer and layerwise theories of composite laminates. Composite Structures 25:21–35

    Article  Google Scholar 

  • Reddy JN (2004) Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, New York

    Book  MATH  Google Scholar 

  • Reddy JN, Arciniega R (2004) Shear deformation plate and shell theories: from stavsky to present. Mech Adv Mater Struct 11:535–582

    Article  Google Scholar 

  • Reddy JN, Liu CF (1985) A higher-order shear deformation theory of laminated elastic shells. International Journal of Engineering Sciences 23(3):319–330

    Article  MATH  Google Scholar 

  • Sambandama CT, Patel BP, Gupta CS S Sand Munot, Ganapathi M (2003) Buckling characteristics of cross-ply elliptical cylinders under axial compression. Composite Structures 62(1):7–17

    Article  Google Scholar 

  • Schwerin E (1925) Die Torsionsstabilität des dünnwandigen Rohres (in Germ.). ZAMM 5(3):235–243

    Article  MATH  Google Scholar 

  • Shaw D, Simitses GJ, Sheinman I (1983) Imperfect, laminated, cylindrical shells in torsion and axial compression. Acta Astronautica 10(5–6):395–400

    Article  MATH  Google Scholar 

  • Sheinman I, Firer M (1994) Buckling analysis of laminated cylindrical shells with arbitrary non-circular cross-section. AIAA Journal 32(5):648–654

    Article  MATH  Google Scholar 

  • Silvestre N (2008) Buckling behaviour of elliptical cylindrical shells and tubes under compression. International Journal of Solids and Structures 45:4427–4447

    Article  MATH  Google Scholar 

  • Simitses GJ (1996) Buckling of moderately thick laminated cylindrical shells: a review. Composites Part B: Engineering 27(6):581–587

    Article  Google Scholar 

  • Simitses GJ, Shaw D, Sheinman I (1985) Inperfection sensitivity of laminated cylindrical shells in torsion and axial compression. Composite Structures 4(4):335–360

    Article  Google Scholar 

  • Soldatos KP (1999) Mechanics of cylindrical shells with non-circular cross-section: a survey. Applied Mechanics Reviews 52:237–274

    Article  Google Scholar 

  • Soldatos KP, Tzivanidis GJ (1982) Buckling and vibration of cross-ply laminated non-circular cylindrical shells. Journal of Sound and Vibration 82(3):425–434

    Article  MATH  Google Scholar 

  • Southwell R (1913) On the collapse of tubes by external pressure. Parts 1, 2, 3. Philos Mag 25(149):687–697

    Google Scholar 

  • Sun G (1991) Buckling and initial post-buckling behaviour of laminated oval cylindrical shells under axial compression. Trans ASME Journal of Applied Mechanics 58:848–851

    Article  MathSciNet  Google Scholar 

  • Takano A (2011) Buckling of thin and moderately thick anisotropic cylinders under combined torsion and axial compression. Thin-Walled Structures 49(2):304–316

    Article  Google Scholar 

  • Tennyson RC (1975) Buckling of laminated composite cylinders: a review. Composites 6(1):17–24

    Article  Google Scholar 

  • Tennyson RC, Chan KC (1990) Buckling of imperfect sandwich cylinders under axial compression. International Journal of Solids and Structures 26(9–10):1017–1036

    Article  MATH  Google Scholar 

  • Timoshenko SP (1936) Theory of Elastic Stability. McGraw-Hill Inc, New York

    Google Scholar 

  • Tovstik PE (1983) Two-dimensional problems of buckling and vibrations of the shells of zero Gaussian curvature. Soviet Physics Doklady 28(7):593–594

    Google Scholar 

  • Tovstik PE (1984) Local loss of stability by cylindrical shells under axial compression. Leningrad University Mechanics Bul 1:46–54

    Google Scholar 

  • Tovstik PE, Smirnov AL (2001) Asymptotic Methods in the Buckling Theory of Elastic Shells. World Scientific, Singapore

    Google Scholar 

  • Weps M, Naumenko K, Altenbach H (2013) Unsymmetric three-layer laminate with soft core for photovoltaic modules. Composite Structures 105:332–339

    Article  Google Scholar 

  • Wu Z, Cheung YK, Lo SH, Chen W (2008) Effects of higher-order global-local shear deformations on bending, vibration and buckling of multilayered plates. Compos Struct 82(2):277–289

    Article  Google Scholar 

  • Yamaki N (1984) Elastic Stability of Circular Cylindrical Shells. Elsevier Science Publishers B.V., Amsterdam-New York-Oxford

    Google Scholar 

  • Yamaki N, Kodama S (1966) Buckling of circular cylindrical shells under torsion. Rept 1: 1965–1966 168, Rept lnst. High Speed Mech.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennadi I. Mikhasev .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mikhasev, G.I., Altenbach, H. (2019). Elastic Buckling of Laminated Beams, Plates, and Cylindrical Shells. In: Thin-walled Laminated Structures. Advanced Structured Materials, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-030-12761-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12761-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12759-6

  • Online ISBN: 978-3-030-12761-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics