
419

9
Epilogue

As we tried to demonstrate in the previous chapters, the design of digital
work systems requires stakeholder involvement in generating relevant
work knowledge, starting with articulation and proceeding with sharing
and aligning it in more or less structured design spaces. When looking
close to transforming organizations towards digital process support, how-
ever, the ultimate goal is to develop executable processes in evolving
cyber-physical environments. Does such a scenario finally mean to edu-
cate stakeholder to become skilled in programming when designing digi-
tal work places and business processes?

Although actor-centered concepts to that direction exist, such as
app’ificiation (Stary 2017), for complex domains, such as additive manu-
facturing, more in-depth knowledge of coding is likely to be required. To
the latter direction, recent work with respect to software-intensive sys-
tems of layered approach involving various levels of abstraction has been
proposed (Börger 2018). It should lead from requirements engineering to
coding through abstract modeling concepts available as high-level pro-
gramming constructs. Such kind of specifications help to define the code
in a way stakeholders intend to, and as required to execute the corre-
sponding software system by digital systems.

© The Author(s) 2019
S. Oppl, C. Stary, Designing Digital Work,
https://doi.org/10.1007/978-3-030-12259-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12259-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-12259-1_9#DOI

420

Börger argues that the remaining gap cannot be closed by mere pro-
gramming methods, but needs to be addressed by an appropriate modeling
framework comprising a design and analysis method, and a language. In
his understanding, programming languages must be supported by model-
ing at higher levels of abstraction than that of the programming language,
as programming means programming reliable complex systems or software-
intensive systems. The latter refer to systems where “the software and the
machines which execute it are only a part of the overall system, where for
the code executing computer(s) the other parts appear as environment—
technical equipment, physical surrounding, information systems, commu-
nication devices, external actors, humans—upon which the behavior of
the software components depends and which they affect” (ibid., p. 1).

Since we consider this kind of system as backbone of digital work
design, we could look in how far coding such systems is supported by
levels of abstraction, including requirements through high-level design to
machine-executable code. As means of describing information on several
layers of abstraction, Börger considers natural language, dedicated lan-
guages, and frameworks appropriate, when capturing programming-
relevant knowledge. Of particular interest, he considers approaches which
“to relate in a controllably reliable way real-world items and behavior
(objects, events and actions) to corresponding items in a textual or graph-
ical description, whether directly by code or by an abstract model that is
transformed in a correctness preserving manner to code” (p. 3).

According to Börger, this epistemological problem has a communica-
tion, an evidence, and an experimental validation strand. Referring to the
intrinsic properties of languages when resolving this problem, stakehold-
ers need an understandable language. More important application such as

language must allow the stakeholders to calibrate the degree of precision of
descriptions (read: their level of abstraction) to the given problem and its
application domain. Last but not least, the language must allow the soft-
ware engineers to link descriptions at different levels of abstraction—trans-
form models, lifting what compilers do to the given levels of abstraction—in
a controllably correct and well documented way to code, using a practical
refinement method that is supported by techniques for both, experimental
validation and mathematical verification (whether informal, rigorous or
formal and machine supported). (p. 2)

  S. Oppl and C. Stary

421

Börger promotes the term ground models referring to some ‘blue-
prints’ through which domain experts and software developers need to
achieve a common understanding of a proper digital support system. This
consensus serves as an essential input for validation. The intended behav-
ior is expected to be delivered by domain experts with rigor valid in the
application domain. This rigor includes describing stable domain assump-
tion with respect to the structure and behavior of system components.
That information is transformed or refined to a software system specifica-
tion. It contains a sufficiently precise behavior description of the digital
support system meeting the requirements as provided by the actors.

Code development requires a ground model to ensure complete and cor-
rect code (cf. Fig. 9.1). Completeness means containing all features of a
system that is relevant from a behavior perspective. Correctness means con-
veying the meaning in a reliable way. The ground model could change in the
course of code development or system evolution, leading to further develop-
ment iterations. Hence, validation based on the actors’ inputs is essential.

Informal Requirements Application Domain Knowledge

Ground Model

Verification

Code

Validation

domains
external functions

manual

mechanized

Prover

adding assumptions

SIMULATOR

adding definitions

stepwise
refinement
reflecting
design
decisions

TEST
CASES

dynamic functions
transition system

using data from
application domain

Fig. 9.1  System development involving the ground model supported by ASM
(Börger and Stärk 2012)

  Epilogue 

422

The ground model should objectively be checkable by the respective
stakeholders, in order to support articulation and alignment activities
focusing on actor perspectives on work processes. Its description requires
a (ground model) language which is

•	 generally understood
•	 appropriately extendable by specific application domain concepts,

where needed, and
•	 clearly defined

It represents “a language of the kind used in rigorous scientific and engi-
neering disciplines, made up from precise and simple but general enough
basic constructs to unambiguously and directly represent arbitrary real-
world facts (states of affairs) and state changing events” (Börger 2018, p. 6).

We consider the proposed organizational development framework
detailed in Chap. 6 applicable to bridge the gap between articulation of
stakeholder requirements and generating code. The articulation, as shown
in Chap. 2, can be based on variety of formats:

•	 natural language which can be refined to abstract models
•	 graspable model entities that need to be tagged in natural language to

develop a domain-relevant representation
•	 predefined elementary symbols representing work activities that allow

complex behavior specifications based on natural language descriptions

Depending on the stakeholder capabilities and preferences, various
entry points for structuring the elicitation procedure and representation
of work knowledge can be selected and applied. Each of the presented
formats allows further processing on a social and technical layer (Chaps.
3 and 4). For alignment and consolidation, models needs to be intelligi-
ble for all stakeholders involved in the process. They might find consen-
sus on an abstract level or require virtual enactment to probe their
model(s) of work. The latter requires executable models.

The presented concepts and instruments enable executable models to
remain on an abstract, since implementation-independent level.
Iterative prototyping supports is thus possible and allows for interactive
validation of specific process scenarios or situations (as also advised by

  S. Oppl and C. Stary

https://doi.org/10.1007/978-3-030-12259-1_6
https://doi.org/10.1007/978-3-030-12259-1_2
https://doi.org/10.1007/978-3-030-12259-1_3
https://doi.org/10.1007/978-3-030-12259-1_4

423

(Börger 2018) for ground model inspection). Remaining on this level of
description allows tracing the diagrammatic model while running its
code. Behavior-centered approaches, such as Subject-oriented Business
Process Management (Fleischmann et al. 2012), finally facilitate the
specification of programming code, as the entire control flow and func-
tional structure can be modeled (see Chap. 5). Still, in those cases, pro-
gramming of system functions remains to be completed, either developing
them from scratch or activating existing software systems. In both cases,
the complexity has been reduced to a manageable system architecture.

References

Börger, Egon. 2018. Why Programming Must Be Supported by Modeling and
How. In Proceedings of ISoLA, LNCS, vol. 11244, 1–22.

Börger, Egon, and Robert Stärk. 2012. Abstract State Machines: A Method for
High-Level System Design and Analysis. Springer Science & Business Media.

Fleischmann, Albert, Werner Schmidt, C. Stary, Stefan Obermeier, and Egon
Börger. 2012. Subject-Oriented Business Process Management.
New York: Springer.

Stary, Christian. 2017. Contextual App’ification. In Proceedings of ROCHI.

Open Access  This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the chapter’s Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from the copy-
right holder.

  Epilogue 

https://doi.org/10.1007/978-3-030-12259-1_5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	9: Epilogue
	References

