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Abstract. In this work, we propose a novel cascaded V-Nets method to seg-
ment brain tumor substructures in multimodal brain magnetic resonance imaging
(MRI). Although V-Net has been successfully used in many segmentation tasks,
we demonstrate that its performance could be further enhanced by using a
cascaded structure and ensemble strategy. Briefly, our baseline V-Net consists of
four levels with encoding and decoding paths and intra- and inter-path skip
connections. Focal loss is chosen to improve performance on hard samples as
well as balance the positive and negative samples. We further propose three
preprocessing pipelines for multimodal MRI images to train different models.
By ensembling the segmentation probability maps obtained from these models,
segmentation result is further improved. In other hand, we propose to segment
the whole tumor first, and then divide it into tumor necrosis, edema, and
enhancing tumor. Experimental results on BraTS 2018 online validation set
achieve average Dice scores of 0.9048, 0.8364 and 0.7748 for whole tumor,
tumor core and enhancing tumor, respectively. The corresponding values for
BraTS 2018 online testing set are 0.8761, 0.7953 and 0.7364, respectively. We
further make a prediction of patient overall survival by ensembling multiple
classifiers for long, mid and short groups, and achieve accuracy of 0.519, mean
square error of 367239 and Spearman correlation coefficient of 0.168.
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1 Introduction

Gliomas are the most common brain tumors and comprise about 30% of all brain
tumors. Gliomas occur in the glial cells of the brain or the spine [1]. They can be
further categorized into low-grade gliomas (LGG) and high-grade gliomas (HGG) ac-
cording to their pathologic evaluation. LGG are well-differentiated and tend to exhibit
benign tendencies and portend a better prognosis for the patients. HGG are undiffer-
entiated and tend to exhibit malignant and usually lead to a worse prognosis. With the
development of the Magnetic Resonance Imaging (MRI), multimodal MRI plays an
important role in disease diagnosis. Different MRI modalities are developed sensitive to
different tissues. For example, T2-weighted (T2) and T2 Fluid Attenuation Inversion
Recovery (FLAIR) are sensitive to peritumoral edema, and post-contrast T1-weighted
(T1Gd) is sensitive to necrotic core and enhancing tumor core. Thus, they can provide
complementary information about gliomas.
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Segmentation of brain tumor is a prerequisite while essential task in disease
diagnosis, surgical planning and prognosis [2]. Automatic segmentation provides
quantitative information that is more accurate and has better reproducibility than
conventional qualitative image review. Moreover, the following task of brain tumor
classification heavily relies on the results of brain tumor segmentation. Automatic
segmentation is considered as a powered engine and empower other intelligent medical
application. However, the segmentation of brain tumor in multimodal MRI scans is one
of the most challenging tasks in medical imaging analysis due to their highly hetero-
geneous appearance, and variable localization, shape and size.

As the rapid development of deep leaning techniques, state-of-the-art performance
on brain tumor segmentation have been achieved. For example, in [3], an end-to-end
training using fully convolutional network (FCN) showed a satisfactory performance in
the localization of the tumor, and patch-wise convolutional neural network (CNN) was
used to segment the intra-tumor structure. In [4], a cascaded anisotropic CNN was
designed to segment three sub-regions with three Nets, and the segmentation result
from previous net was used as receptive field in the next net.

Inspired by the good performance of V-Net in segmentation tasks and the cascaded
strategy, we propose a cascaded V-Nets method to segment brain tumor into three
substructures and background. In particular, the cascaded V-Nets not only take
advantage of residual connection but also use the extra coarse localization and
ensemble of multiple models to boost the performance.

2 Method

2.1 Dataset and Preprocessing

The data used in experiments come from BraTS 2018 training set and validation set [5–
8]. The training set includes totally 210 HGG patients and 75 LGG patients. The
validation set includes 66 patients. Each patient has five MRI modalities including T1-
weighted (T1), T2, T1Gd, FLAIR, and a ground truth label of tumor substructures. We
use 80% of the training data as our training set, other 20% of the training data as our
local testing set. All data used in the experiments are preprocessed with special
designed procedures. A flow chart of the proposed preprocessing procedures is shown
in Fig. 1, as follows:

(1) Apply bias field correction N4 [9] to T1 and T1Gd images, normalize each
modality using histogram matching with respect to a MNI template image, and
rescale the images intensity value into range of −1 to 1.

(2) Apply bias field correction N4 to all modalities, compute the standardized z-
scores for each image and rescale 0–99.9 percentile intensity values into range of
−1 to 1.

(3) Follow the first method, and further apply affine alignment to co-register each
image to the MNI template image.
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2.2 V-Net Architecture

V-Net was initially proposed to segment prostate by training an end-to-end CNN on
MRI [10]. The architecture of our V-Net is shown in Fig. 2. The left side of V-Net
reduces the size of the input by down-sampling, and the right side of V-Net recovers
the semantic segmentation image that has the same size with input images by applying
de-convolutions. The detailed parameters about V-Net is shown in Table 1. By means
of introducing residual function and skip connection, V-Net has better segmentation
performance compared with classical CNN. By means of introducing the 3D kernel
with a size of 1 * 1 * 1, the numbers of parameters in V-Net is decreased and the
memory consumption is greatly reduced.

Fig. 1. The flow chart of the preprocessing procedures.
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2.3 Proposed Cascaded V-Nets Framework

Although V-Net has demonstrated promising performances in segmentation tasks, it
could be further improved if incorporated with extra information, such as coarse
localization. Therefore, we propose a cascaded V-Nets method for tumor segmentation.
Briefly, we (1) use one V-Net for the brain whole tumor segmentation; (2) use a second
V-Net to further divide the tumor region into three substructures, e.g., tumor necrosis,
edema, and enhancing tumor. Note that the coarse segmentation of whole tumor in the
first V-Net is also used as receptive field to boost the performance. Detailed steps are as
follows.

The proposed framework is shown in Fig. 3. There are two networks to segment
substructures of brain tumors sequentially. The first network (V-Net 1) includes models
1–3, designed to segment the whole tumor. These models are trained by three kinds of
preprocessed data mentioned in part of 2.1, respectively. V-Net 1 uses four modalities
MR images as inputs, and outputs the mask of whole tumor (WT). The second network
(V-Net 2) includes models 4-5, designed to segment the brain tumor into three sub-
structures: tumor necrosis, edema, and enhancing tumor. These models are trained by
the first two kinds of preprocessed data mentioned in part of 2.1, respectively. V-Net 2
also uses four modalities MR images as inputs, and outputs the segmented mask with
three labels. Note that the inputs of V-Net 2 have been processed by using the mask of
WT as region of interest (ROI). In other words, the areas out of the ROI are set as
background. Finally, we combine the segmentation results of whole tumor obtained by
V-Net 1 and the segmentation results of tumor core (TC, includes tumor necrosis and
enhancing tumor) obtained by V-Net 2 to achieve more accurate results about the three

Fig. 2. The architecture of the used V-Net.
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substructures of brain tumor. In short, the cascaded V-Nets take advantage of seg-
menting the brain tumor and three substructures sequentially, and ensemble of multiple
models to boost the performance and achieve more accurate segmentation results.

Table 1. The detailed parameters of the used V-Net, as shown in Fig. 2. The symbol ‘-’ means
the output dimensions are the same with input dimensions.

Blocks Sub-blocks or layers Input dimensions Output
dimensions

Input Block Conv(k = 3, p = 1, s = 1) + BN + ReLU 96 * 96 * 96 * 4 96 * 96 * 96 * 16

Down
Block 1

Conv(k = 2, p = 0, s = 2) + BN + ReLU 96 * 96 * 96 * 16 48 * 48 * 48 * 32

Residual
Block

Conv(k = 3, p = 1,
s = 1) + BN

48 * 48 * 48 * 32 -

(input + output) + ReLU 48 * 48 * 48 * 32 -

Down
Block 2

Conv(k = 2, p = 0, s = 2) + BN + ReLU 48 * 48 * 48 * 32 24 * 24 * 24 * 64

Residual
Block

Conv Block * 2 24 * 24 * 24 * 64 -

(input + output) + ReLU 24 * 24 * 24 * 64 -

Down
Block 3

Conv(k = 2, p = 0, s = 2) + BN + ReLU 24 * 24 * 24 * 64 12 * 12 * 12 * 128

Residual
Block

Conv Block * 3 12 * 12 * 12 * 128 -

(input + output) + ReLU 12 * 12 * 12 * 128 -

Down
Block 4

Conv(k = 2, p = 0, s = 2) + BN + ReLU 12 * 12 * 12 * 128 6 * 6 * 6 * 256

Residual
Block

Conv Block * 3 6 * 6 * 6 * 256 -

(input + output) + ReLU 6 * 6 * 6 * 256 -

Up Block 1 Conv(k = 2, p = 0, s = 2) + BN + ReLU 6 * 6 * 6 * 256 12 * 12 * 12 * 128

Residual
Block

Cat(output, skip) 12 * 12 * 12 * 128 12 * 12 * 12 * 256

Conv Block * 3 12 * 12 * 12 * 256 -

(input + output) + ReLU 12 * 12 * 12 * 256 -

Up Block 2 Conv(k = 2, p = 0, s = 2) + BN + ReLU 12 * 12 * 12 * 256 24 * 24 * 24 * 64

Residual
Block

Cat(output + skip) 24 * 24 * 24 * 64 24 * 24 * 24 * 128

Conv Block * 3 24 * 24 * 24 * 128 -

(input + output) + ReLU 24 * 24 * 24 * 128 -

Up Block 3 Conv(k = 2, p = 0, s = 2) + BN + ReLU 24 * 24 * 24 * 128 48 * 48 * 48 * 32

Residual
Block

Cat(output + skip) 48 * 48 * 48 * 32 48 * 48 * 48 * 64

Conv(k = 3, p = 1,
s = 1) + BN + ReLU

48 * 48 * 48 * 64 -

Conv(k = 3, p = 1,
s = 1) + BN

48 * 48 * 48 * 64 -

(input + output) + ReLU 48 * 48 * 48 * 64 -

Up Block 4 Conv(k = 2, p = 0, s = 2) + BN + ReLU 48 * 48 * 48 * 64 96 * 96 * 96 * 16

Residual
Block

Cat(output + skip) 96 * 96 * 96 * 16 96 * 96 * 96 * 32

Conv(k = 3, p = 1, s = 1) + BN 96 * 96 * 96 * 32 -

(input + output) + ReLU 96 * 96 * 96 * 32 -

Out Block Conv(k = 1, p = 0, s = 1) + BN + ReLU 96 * 96 * 96 * 32 96 * 96 * 96 * 4

Softmax 96 * 96 * 96 * 4 96 * 96 * 96 * 1

Note: Each Conv sub-block contains three convolution layers: Conv1(k = 1, p = 0, s = 1), Conv2(k = 3, p = 1,
s = 1), and Conv3(k = 1, p = 0, s = 1). k, kernel size; p, padding; s, stride.
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2.4 Ensemble Strategy

Our ensemble strategy is simple but efficient. It works by averaging the probability
maps obtained from different models. We use ensemble strategy twice in the two-step
segmentation of the brain tumor substructures. For example, in V-Net 1, the probability
maps of WT obtained from Model 1, Model 2, and Model 3 are averaged to get the
final probability map of WT. In V-Net 2, the probability maps of tumor necrosis,
edema, and enhancing tumor obtained from Model 4 and Model 5 are averaged to get
final probability maps of brain tumor substructures, respectively.

2.5 Network Implementation

Our cascaded V-Nets are implemented in the deep learning framework PyTorch. In our
network, we initialize weights with kaiming initialization [11], and use focal loss [12]
illustrated in formula (1) as loss function. Adaptive Moment Estimation (Adam) [13] is
used as optimizer with learning rate of 0.001, and batch size of 8. Experiments are
performed with a NVIDIA Titan Xp 12 GB GPU.

Focal Loss ptð Þ ¼ �a 1� ptð Þrlog ptð Þ ð1Þ

where, a denotes the weight to balance the importance of positive/negative samples,
and r denotes the factor to increase the importance of correcting misclassified samples.
pt is the probability of the ground truth.

Fig. 3. The proposed framework of cascaded V-Nets for brain tumor segmentation.
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In order to reduce the memory consumption in the training process, 3D patches
with a size of 96 * 96 * 96 are used. And the center of the patch is confined to the
bounding box of the brain tumor. Therefore, every patch used in training process
contains both tumor and background. The training efficiency of the network has been
greatly improved.

2.6 Post-processing

The predicted segmentation results are post-processed using connected component
analysis. We consider that the isolated segmentation labels with small size are prone to
artifacts and thus remove them. After the V-Net 1, the components with total voxel
number below a threshold (T = 1000) are discarded and these over a threshold
(T = 15000) are retained in the binary whole tumor map. For others, their average
segmentation probabilities are calculated, and will be retained if over 0.85. After the V-
Net 2, masks of different labels are used in the connected component analysis.
Moreover, if all the connected components are less than 1000 voxels, we will retain the
largest connected component.

2.7 Prediction of Patient Overall Survival

Overall survival (OS) is a direct measure of clinical benefit to a patient. Generally,
brain tumor patients could be classified into long‐survivors (e.g., >15 months), mid‐
survivors (e.g., between 10 and 15 months), and short‐survivors (e.g., <10 months).
From the multimodal MRI data, we propose to use our tumor segmentations and
generate imaging markers through Radiomics method to predict the patient OS groups.

From the training data, we extract 40 hand-crafted features and 945 radiomics
features in total. The detailed extracted features are shown in Table 2. All features are
normalized into range of 0 to 1. Pearson correlation coefficient is used for feature
selection. We use support vector machine (SVM), multilayer perceptrons (MLP),
XGBoost, decision tree classifier, linear discriminant analysis (LDA) and random forest
(RF) as our classifiers in an ensemble strategy. F1-score is used as the evaluation
standard. The final result is determined by the vote on all classification results. In order
to reduce the bias, a ten-fold cross-validation is used. For the validation and testing
data, these selected features are extracted and prediction is made using the above
model.
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3 Experimental Results

3.1 Segmentation Results on Local Testing Set

We use 20% of all data as our local testing set, which includes 42 HGG patients and 15
LGG patients. Representative segmentation results are shown in Fig. 4. The green
shows the edema, the red shows the tumor necrosis, and the yellow shows the
enhancing tumor. In order to evaluate the preliminary experimental results, we cal-
culate the average Dice scores, sensitivity and specificity for whole tumor, tumor core
and enhancing tumor, respectively. The results are shown in Table 3. The segmentation
of whole tumor achieves best results with average Dice score of 0.8505.

3.2 Segmentation Results on MICCAI BraTS 2018 Validation Set
of 66 Subjects

The segmentation results on BraTS 2018 online validation set achieve average Dice
scores of 0.9048, 0.8364, 0.7768 for whole tumor, tumor core and enhancing tumor,
respectively. That performance is slightly better than that in local testing set, while the
whole tumor still has best results and enhancing tumor is the most challenging one. The
details are shown in Table 4.

Table 2. Selected features in the training data for the prediction of patient overall survival.

Features Number of
features

Age 1
Volume of whole brain 1
Volume of whole tumor 1
Volumes of three tumor substructures 3
Ratio of the whole tumor in whole brain 1
Ratios of three tumor substructures in whole tumor 3
Extent of lesion in x, y, z directions 3
Center coordinates of the whole tumor 3
Means and variances of three tumor substructures in four MR modalities 24
First order statistics features of three tumor substructures 411
Shape-based features of three tumor substructures 78
Gray level cooccurence matrix features of three tumor substructures 180
Gray level run length matrix features of three tumor substructures 96
Neigbouring gray tone difference matrix features of three tumor
substructures

96

Gray level dependence matrix features of three tumor substructures 84
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3.3 Segmentation and Prediction Results on MICCAI BraTS 2018
Testing Set of 191 Subjects

The segmentation results on BraTS 2018 online testing set achieve average Dice scores
of 0.8761, 0.7953, 0.7364 for whole tumor, tumor core and enhancing tumor,
respectively. Compared with the Dice scores on MICCAI BraTS 2018 validation set,
the numbers are slightly dropped. The details are shown in Table 5. The prediction of
patient OS on BraTS 2018 testing set achieve accuracy of 0.519 and mean square error
(MSE) of 367239. The details are shown in Table 6. The BraTS 2018 ranking of all
participating teams in the testing data for both tasks has been summarized in [14],
where our team listed as “LADYHR” and ranked 18 out of 61 in the segmentation task
and 7 out of 26 in the prediction task.

Fig. 4. The comparison of segmentation results and ground truth on four representative cases
from local testing set. (a) The segmentation results of brain tumor. (b) The ground truth of the
brain tumor. (Color figure online)

Table 3. Dice, Sensitivity and Specificity measurements of the proposed method on local
testing set.

Whole tumor Tumor core Enhancing tumor

Dice mean ± SD 0.8505 ± 0.0972 0.7842 ± 0.1919 0.7426 ± 0.2080
Sensitivity mean ± SD 0.9180 ± 0.1091 0.7596 ± 0.2199 0.7174 ± 0.2337
Specificity mean ± SD 0.9981 ± 0.0012 0.9996 ± 0.0008 0.9997 ± 0.0003
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4 Discussion

In this paper, we propose a cascaded V-Nets framework to segment brain tumor. The
V-Nets are trained only using provided data, data augmentation and a focal loss for-
mulation. We achieve state-of-the-art results on BraTS 2018 validation set. The
experimental results on BraTS 2018 online validation set achieve average Dice scores
of 0.9048, 0.8364, 0.7768 for whole tumor, tumor core and enhancing tumor respec-
tively. The corresponding values for BraTS 2018 online testing set are 0.8761, 0.7953
and 0.7364, respectively. Generally, all the three average Dice scores degenerate in
testing set compared with validation set. Three are two possible reasons: (1) the testing
set includes more cases than validation set, and (2) the thresholds in post-processing
maybe more suitable for validation set. Therefore, our future work is to make the
models to be more robust.

There are several benefits of using a cascaded framework. First, the cascaded
framework breaks down a difficult segmentation task into two easier subtasks.
Therefore, a simple network V-Net can have excellent performance. In fact, in our
experiment, V-Net does have better performance when segment the tumor substruc-
tures step by step than segment background and all the three tumor substructures

Table 4. Dice, Sensitivity, Specificity and Hausdorff95 measurements of the proposed method
on BraTS 2018 validation set.

Whole tumor Tumor core Enhancing tumor

Dice mean ± SD 0.9048 ± 0.0648 0.8364 ± 0.1609 0.7768 ± 0.2355
Sensitivity mean ± SD 0.9146 ± 0.0949 0.8453 ± 0.1781 0.8166 ± 0.2382
Specificity mean ± SD 0.9945 ± 0.0041 0.9971 ± 0.0041 0.9977 ± 0.0032
Hausdorff95 mean ± SD (mm) 5.1759 ± 7.3622 6.2780 ± 7.7681 3.5123 ± 4.5407

Table 5. Dice and Hausdorff95 measurements of the proposed method on BraTS 2018 testing
set.

Whole tumor Tumor core Enhancing tumor

Dice mean ± SD 0.8761 ± 0.1247 0.7953 ± 0.2543 0.7364 ± 0.2592
Hausdorff95 mean ± SD (mm) 7.0514 ± 11.5935 6.7262 ± 11.8852 3.9217 ± 6.1934

Table 6. The prediction of patient OS on BraTS 2018 testing set.

Scores

Accuracy 0.519
Mean squared error (MSE) 367239.974
Median square error (Median SE) 38416
Standard deviation square error 945593.877
Spearman R 0.168
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together. Second, the segmentation results of V-Net 1 helps to reduce the receptive field
from whole brain to only whole tumor. Thus, some false positive results can be avoid.

In addition to cascaded framework, ensemble strategy contributes to the segmen-
tation performance. In our cascaded framework, V-Net 1 includes models 1–3 and V-
Net 2 includes models 4–5. Every model uses the same network structure V-Net.
However, the training data is preprocessed with different pipelines mentioned in part of
2.1. According to our experimental experience, the Dice scores will greatly decrease
due to the false positive results. While we did try several ways to change the pre-
processing procedures for the training data, or change the model used in the seg-
mentation task, the false positive results always appear. Interestingly, the false positive
results appear in different areas in terms of different models. Therefore, ensemble
strategy works by averaging probability maps obtained from different models.

Moreover, we find three interesting points in the experiment. Firstly, for multi-
modal MR images, the combination of data preprocessing procedures is important. In
other words, different MRI modalities should be preprocessed independently. For
example, in our first preprocessing pipeline, bias field correction only applied to T1 and
T1Gd images. The reason is that the histogram matching approach may remove the
high intensity information of tumor structure that has negative impact to the seg-
mentation task. Secondly, we use three kinds of preprocessing methods to process the
training and validation data, and compared their segmentation results. As a result, there
is almost no difference between preprocessing methods in the three average Dice scores
for whole tumor, tumor core and enhancing tumor, respectively. However, after the
ensemble of the multiple models, the three average Dice scores all rose at least 2%.
This suggests that data preprocessing methods is not the most important factor for the
segmentation performance, while different data preprocessing methods are comple-
mentary and their combination can boost segmentation performance. Thirdly, the post-
processing method is also important that it could affect the average Dices scores
largely. If the threshold is too big, some of small clusters will be discarded improperly.
If the threshold is too small, some false positive results will be retained. In order to
have a better performance, we test a range of thresholds and choose the most suitable
two thresholds as the upper and the lower bounds. For the components between upper
and lower bounds, their average segmentation probabilities are calculated as a second
criterion. Of course, these thresholds may not be suitable for all cases.

5 Conclusions

In conclusion, we propose a cascaded V-Nets framework to segment brain tumor into
three substructures of brain tumor and background. The experimental results on BraTS
2018 online validation set achieve average Dice scores of 0.9048, 0.8364, 0.7768 for
whole tumor, tumor core and enhancing tumor, respectively. The corresponding values
for BraTS 2018 online testing set are 0.8761, 0.7953 and 0.7364, respectively. The
state-of-the-art results demonstrate that V-Net is a promising network for 3D medical
imaging segmentation tasks, and the cascaded framework and ensemble strategy are
efficient for boosting the segmentation performance.
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