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Abstract. Thanks to the powerful representation learning ability, con-
volutional neural network has been an effective tool for the brain tumor
segmentation task. In this work, we design multiple deep architectures
of varied structures to learning contextual and attentive information,
then ensemble the predictions of these models to obtain more robust
segmentation results. In this way, the risk of overfitting in segmenta-
tion is reduced. Experimental results on validation dataset of BraTS
2018 challenge demonstrate that the proposed method can achieve good
performance with average Dice scores of 0.8136, 0.9095 and 0.8651 for
enhancing tumor, whole tumor and tumor core, respectively. The corre-
sponding scores for BraTS 2018 testing set are 0.7775, 0.8842 and 0.7960,
respectively, winning the third position in the BraTS 2018 competition
among 64 participating teams.

1 Introduction

Brain tumor is one of the most fatal cancers, which consists of uncontrolled,
unnatural growth and division of the cells in the brain tissue [1]. The most fre-
quent types of brain tumors in adults are gliomas that arise from glial cells and
infiltrating the surrounding tissues [2]. According to the malignant degree of
gliomas and their origin, these neoplasms can be categorized into Low Grade
Gliomas (LGG) and High Grade Gliomas (HGG) [2,3]. The former is slower-
growing and comes with a life expectancy of several years, while the latter is
more aggressive and infiltrative, having a shorter survival period and requiring
immediate treatment [2]. Therefore, segmenting brain tumor timely and auto-
matically would be of critical importance for assisting the doctors to improve
diagnosis, perform surgery and make treatment planning.

In recent years, convolutional neural networks (CNNs) have been widely
applied to automatic brain tumor segmentation tasks. Pereira et al. [15] and
Havaei et al. [13] respectively trained a CNN to predict the label of the central
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voxel only within a patch, which causes that they suffer from high computational
cost and time consumption during inference. To reduce the computational bur-
den, Kamnitsas et al. [5] propose an efficient model named DeepMedic that can
predict the labels of voxels within a patch simultaneously, in order to achieve
dense predictions. Recently, fully convolutional networks (FCNs) have achieved
promising results. Shen et al. [6] and Zhao et al. [11] allow end-to-end dense
training and testing for brain tumor segmentation at the slice level to improve
computational efficiency. With a large variety of CNN architectures proposed,
the performance of automatic brain tumor segmentation from Magnetic Reso-
nance Imaging (MRI) images has been improved greatly.

In this work, we construct multiple different CNN architectures and
approaches to ensemble their prediction results, in order to produce stable and
robust segmentation performance. We evaluate our approaches on the valida-
tion set of 2018 Brain Tumor Segmentation (BraTS) challenge, where we obtain
the good performance with average Dice scores of 0.8136, 0.9095 and 0.8651 for
enhancing tumor, whole tumor and tumor core, respectively. Correspondingly,
we achieve promising scores for BraTS 2018 testing set are 0.7775, 0.8842 and
0.7960, respectively.

2 Data

We use the dataset of 2018 Brain Tumor Segmentation challenge [2,4,7,8,21]
for experiments, which consists of the training set, validation set and testing
set. The training set contains 210 HGG and 75 LGG cases whose corresponding
manual segmentations are provided. As shown in Fig. 1, the provided manual
segmentations include four labels: 1 for necrotic (NCR) and the non-enhancing
(NET) tumor, 2 for edema (ED), 4 for enhancing tumor (ET), and 0 for every-
thing else, i.e. normal tissue and background (black padding). The validation set
and testing set contain 66 cases and 191 cases with unknow grade and hidden
segmentations, respectively. Each case has four MRI sequences that are named
T1, T1 contrast enhanced (T1ce), T2 and FLAIR, respectively. These datasets
are provided after their pre-processing, i.e. co-registered to the same anatom-
ical template, interpolated to the same resolution (1 mm3) and skull-stripped,
where dimensions of each MRI sequence are 240 × 240 × 155. Besides, the offi-
cial evaluation is calculated by merging the predicted labels into three regions:
whole tumor (1,2,4), tumor core (1,4) and enhancing tumor (4). The valuation
for validation set is conducted via an online system1.

3 Methods

3.1 Basic Networks

As is well known, brain tumor segmentation from MRI images is a very tough
and challenging task due to the severe class imbalance problem. Following [14],
1 https://ipp.cbica.upenn.edu/.

https://ipp.cbica.upenn.edu/
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Fig. 1. Example of images from the BRATS 2018 dataset. From left to right: Flair, T1,
T1ce, T2 and manual annotation overlaid on the Flair image: edema (green), necrosis
and non-enhancing (yellow), and enhancing (red). (Color figure online)

we decompose the multi-class brain tumor segmentation into three different but
related sub-tasks to deal with the class imbalance problem. (1) Coarse segmenta-
tion to detect whole tumor. In this sub-task, the region of whole tumor is located.
To reduce overfitting, we define the first task being the five-class segmentation
problem. (2) Refined segmentation for whole tumor and its intra-tumoral classes.
The above obtained coarse tumor mask is dilated by 5 voxels as the ROI for the
second task. In this sub-task, the precise classes for all voxels within the dilated
region are predicted. (3) Precise segmentation for enhancing tumor. We spe-
cially design the third sub-task to segment the enhancing tumor, due to its high
difficulty of segmentation.

Model Cascade. In view of the above three sub-tasks, it is probably easy to
train a CNN individually for each sub-task, which is the currently popular Model
Cascade (MC) strategy. We use a 3D variant of the FusionNet [10], as illustrated
in Fig. 2. The network architecture consists of an encoding path (upper half of
the network) to extract complex semantic features and a symmetric decoding
path (lower half of the network) to recover the same resolution as the input to
achieve voxel-to-voxel predictions. The network is constructed by four types of
basic building blocks, as shown in Fig. 2. In addition, the network has not only
the short shortcuts in residual blocks, but also three long skip connections to
merge the feature maps from the same level in the encoding path during decoding
by using a voxel-wise addition. We employ the identical network architecture for
each sub-task, except for the final convolutional classification layer. The number
of channels of last classification layer is equal to 5, 5 and 2 for the first, second
and third sub-tasks, respectively. Besides, size of input patches for the network
is 32 × 32 × 16 × 4, where the number 4 indicates the four MRI modalities.
During inference, we adopt overlap-tile strategy in [9]. Thus, we abandon the
prediction results of border region and only retain the predictions in the center
region (20 × 20 × 5). This trick is also used in the following models. Different
from [20] that is a typical example of model cascade strategy, we dilate the coarse
tumor mask to prevent tumor omitting in the second sub-task and adopt the
same 3D basic network architecture for each sub-task instead of sophisticated
operations that design different networks for different sub-tasks.
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Fig. 2. Network architecture used in each sub-task. The building blocks are represented
by colored cubes with numbers nearby being the number of feature maps. C equals to
5, 5, and 2 for the first, second, and third task, respectively. (Best viewed in color)
This figure is reproduced from [14].

One-Pass Multi-task Network. The above proposed model cascade approach
has obtained promising segmentation performance. To a certain extent, it allevi-
ates the problem of class imbalance. However, model cascade approach needs to
train a series of deep models individually for the three different sub-tasks, which
leads to large memory cost and system complexity during training and testing.
In addition, we have observed that the networks used for three sub-tasks are
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almost the same except for the training data and the classification layer. It is
obvious that the three sub-tasks are relative to each other.

Therefore, we employ the one-pass multi-task network (OM-Net) proposed in
[14], which is a multi-task learning framework that incorporates the three sub-
tasks into a end-to-end holistic network, to save a lot of parameters and exploit
the underlying relevance among the three sub-tasks. The OM-Net proposed in
[14] is described in Fig. 3, which is composed of the sharable parameters and task-
specific parameters. Specially, the shared backbone model refers to the network
layers outlined by the yellow dashed line in Fig. 2, while three respective branches
for different sub-tasks are designed after the shared parts.

Fig. 3. Architecture of OM-Net. Data-i, Feature-i, and Output-i denote training data,
feature, and classification layer for the i-th task, respectively. The shared backbone
model refers to the network layers outlined by the yellow dashed line in Fig. 2. This
figure is reproduced from [14].

In addition, inspired by the curriculum learning theory proposed by Bengio
et al. [12] that humans can learn a set of concepts much better when the concepts
to be learned are presented by gradually increasing the difficulty level, we adopt
the curriculum learning-based training strategy in [14] to train OM-Net more
effectively. The training strategy of our framework is to start training the network
on the first easiest sub-task, then gradually add the more difficult sub-tasks and
their corresponding training data to the model. This is a process from easy
to difficult, highly consistent with the thought of manual segmentation of the
tumor. Besides, the training data conforming to the sampling strategy of the
other sub-tasks can be transferred to achieve data sharing. Eventually, the OM-
Net is a single deep model to slove three sub-tasks simultaneously in one-pass.
It is also significantly smaller in the number of trainable parameters than model
cascade strategy and can be trained end-to-end using stochastic gradient descent
to achieve data sharing and parameters sharing in a holistic network.
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3.2 Extended Networks

In this section, we extend and improve the MC-baseline and OM-Net from four
aspects to further promote the performance. The four aspects are elaborated in
the following.

Deeper OM-Net. We deepen the OM-Net by appending a residual block (the
violet block in Fig. 2 right) after each existing residual block of OM-Net, which
is the easiest and most direct way to boost the performance.

Dense Connections. Inspired by [17], the basic 3D network of MC-baseline is
modified by adding a series of nested and dense skip connections to form a more
powerful architecture. The purpose of the re-designed skip connections is to reduce
the semantic gap between the feature maps of the encoder and decoder [17].

Attention Mechanisms. Attention mechanisms have been shown to improve
performance across a range of tasks, which is attributed to their ability to focus
on the more informative components and suppress less useful ones. Particularly,
“Squeeze-and-Excitation” (SE) block is proposed to adaptively perform channel-
wise feature recalibration by explicitly modelling interdependencies between
channels in [16], in order to boost the representational power of CNNs.

Fig. 4. The adopted “Squeeze-and-Excitation” (SE) block.

Inspired by it, we introduce SE blocks to OM-Net, in order to recalibrate the
feature maps and further improve the learning and representational properties
of OM-Net. The SE block is described in Fig. 4. Similar to [16], the SE block
focuses on channels to adaptively recalibrate channel-wise feature responses in
two steps, squeeze and excitation. It helps the network to increase the sensitivity
to informative features and suppress less useful ones.
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Multi-scale Contextual Information. To deal with the 3D medical scans,
we employ the above 3D CNNs that process small 3D patches. However, small
patches cause the network to lean the limited contextual information. It seems
necessary to introduce larger patches, in order to provide larger receptive fields
and more contextual information to the network. Therefore, inspried by [5],
we design a two parallel pathway architecture that processes two scale input
patches simultaneously. As shown in Fig. 5, we incorporate both local and larger
contextual information to the model, which not only extracts semantic features
at a higher resolution, but also considers larger contextual information from the
lower resolution level. It can provide rich information to discriminate voxels that
appear very similar when considering only local appearance, avoiding making
wrong predictions.

Fig. 5. The proposed network architecture to introduce multi-scale contextual infor-
mation.

Table 1. Mean values of Dice and Hausdorff95 measurements on BraTS 2018 validation
set (submission id DL-86-61).

Method Dice Hausdorff95

Enh. Whole Core Enh. Whole Core

MC-Net 0.7732 0.9006 0.8232 4.1647 4.4849 7.6216

OM-Net 0.7882 0.9034 0.8273 3.1003 6.5218 7.1974

MC-Net (Dense connections) 0.7768 0.9049 0.8358 3.3994 4.2390 6.8503

MC-Net (Multi-scale) 0.7751 0.9059 0.8181 2.8192 4.0085 6.3437

OM-Net (Attention) 0.7792 0.8986 0.8329 3.8949 6.1926 8.3459

Deeper OM-Net 0.7882 0.8991 0.8405 2.7649 8.0177 7.3671

Deeper OM-Net (Attention) 0.7925 0.8948 0.8333 2.8099 4.8093 6.7755

Ensembles 0.8137 0.9092 0.8530 2.7092 4.4519 7.1535

Ensembles + post-processing 0.8136 0.9095 0.8651 2.7162 4.1724 6.5445
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Table 2. Mean values of Sensitivity and Specificity measurements on BraTS 2018
validation set.

Method Sensitivity Specificity

Enh. Whole Core Enh. Whole Core

MC-Net 0.8082 0.9118 0.7971 0.9980 0.9943 0.9981

OM-Net 0.7953 0.9084 0.7883 0.9984 0.9948 0.9985

MC-Net (Dense connections) 0.8144 0.9127 0.8323 0.9979 0.9947 0.9973

MC-Net (Multi-scale) 0.8095 0.9065 0.7970 0.9980 0.9951 0.9981

OM-Net (Attention) 0.8245 0.9078 0.8103 0.9977 0.9943 0.9979

Deeper OM-Net 0.7962 0.9059 0.8176 0.9984 0.9945 0.9979

Deeper OM-Net (Attention) 0.7995 0.8972 0.8159 0.9983 0.9946 0.9975

Ensembles 0.8137 0.9148 0.8294 0.9983 0.9950 0.9981

Ensembles + post-processing 0.8135 0.9142 0.8683 0.9983 0.9951 0.9968

Table 3. The segmentation results of our proposed method on BraTS 2018 testing set.

Dice Hausdorff95

Enh. Whole Core Enh. Whole Core

Mean 0.7775 0.8842 0.7960 2.9366 5.4681 6.8773

StdDev 0.2533 0.1127 0.2593 4.6894 7.6479 10.1779

Median 0.8498 0.9183 0.9030 1.7321 3.1623 3.0000

25quantil 0.7596 0.8725 0.8062 1.4142 2.0000 1.7321

75quantil 0.8997 0.9437 0.9376 2.7337 5.3852 7.2798

3.3 Ensembles of the Above Multiple Models

Model ensembling is an effective method to improve performance, e.g. Kamnitsas
et al. [19] ensembled DeepMedic [5], 3D FCN [18], and 3D U-Net [9] into EMMA.
In this paper, we also adopt model ensembling to obtain more robust segmenta-
tion results. Above multiple models, including MC-Net, OM-Net and their vari-
ants are trained separately, and the predicted probabilities are averaged at testing
time. Additionally, a simple yet effective post-processing method [14] is adopted
to improve segmentation performance.

4 Experiments and Results

Pre-processing. We adopt the minimal pre-processing operation to the BraTS
2018 data. That is, each sequence is individually normalized by subtracting its
mean value and dividing by its standard deviation of the intensities within the
brain area in that sequence.
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Fig. 6. Example segmentation results on the validation set of BraTS 2018. From left
to right: Flair, T1ce, segmentation results using MC-Net only overlaid on Flair image,
and segmentation results using the proposed method overlaid on Flair image; edema
(green), necrosis and non-enhancing (blue), and enhancing (red). (Color figure online)

Segmentation Results. Table 1 presents the mean values of Dice and Haus-
dorff95 measurements of the different models on BraTS 2018 validation set,
meanwhile Table 2 presents the corresponding mean values of Sensitivity and
Specificity measurements. We can see that the OM-Net is superior to MC-Net,
despite the fewer training parameters of OM-Net. Besides, the extended networks
including MC-Net (Dense connections), MC-Net (Multi-scale), OM-Net (Atten-
tion), Deeper OM-Net and Deeper OM-Net (Attention) improve the segmenta-
tion performance to some extent. Finally, it shows that the proposed method
achieves promising performance with average Dice scores of 0.8136, 0.9095 and
0.8651 for enhancing tumor, whole tumor and tumor core, respectively. In addi-
tion, we also provide qualitative comparisons in Fig. 6. From Fig. 6, we can see
that model ensembling is much better and the effectiveness of the proposed
method is justified.

Table 3 presents the segmentation results of our proposed method on BraTS
2018 testing set. It shows that the proposed method yields excellent performance,
winning the third position in the BraTS 2018 competition.

5 Conclusion

In this work, we employ the OM-Net to obtain strong basic results, and then
extend and improve MC-baseline and OM-Net from multiple aspects to further
promote the performance. Eventually, the predictions of these models are ensem-
bled to produce robust performance for brain tumor segmentation. The proposed
method yields promising results, winning third place in the final testing stage of
the BraTS 2018 challenge.
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