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Abstract. We introduce a new family of classifiers based on our pre-
vious DeepSCAN architecture, in which densely connected blocks of
dilated convolutions are embedded in a shallow U-net-style structure
of down/upsampling and skip connections. These networks are trained
using a newly designed loss function which models label noise and uncer-
tainty. We present results on the testing dataset of the Multimodal Brain
Tumor Segmentation Challenge 2018.

1 Introduction

We present a network architecture for semantic segmentation, heavily inspired
by the recent Densenet architecture for image classification [7], in which pooling
layers are replaced by heavy use of dilated convolutions [16]. Densenet employs
dense blocks, in which the output of each layer is concatenated with its input
before passing to the next layer. A typical Densenet architecture consists of a
number of dense blocks separated by transition layers: the transition layers con-
tain a pooling operation, which allows some degree of translation invariance and
downsamples the feature maps. A Densenet architecture adapted for semantic
segmentation was presented in [8], which adopted the now standard approach
of U-net [15]: a downsampling path, followed by an upsampling path, with skip
connections passing feature maps of the sample spatial dimension from the down-
sampling path to the upsampling path.

In a previous paper [12], we described an alternative architecture adapting
Densenet for semantic segmentation: in this architecture, which we called Deep-
SCAN, there are no transition layers and no pooling operations. Instead, dilated
convolutions are used to increase the receptive field of the classifier. The absence
of transition layers means that the whole network can be seen as a single dense
block, enabling gradients to pass easily to the deepest layers. While we believe
that this approach offers many advantages over U-net, by avoiding pooling and
upscaling, this comes at the price of very high memory consumption, since all
feature maps are present at the resolution of the final segmentation image. This
restricts the possible depth, batch size, and input patch size of the network.
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In this paper we describe a family of CNN models for segmentation which
represent a continuum from our previously described DeepSCAN models to
U-net-like models, in which a pooling-free dense net is embedded inside a U-net
style network. This allows the dense part of the network to operate at a lower
resolution, improving memory efficiency while maintaining many good properties
of the original DeepSCAN architecture.

We describe the general architecture of the family of DeepSCAN models, plus
the particular features of the network as applied to brain tumor segmentation,
including pre-processing, data augmentation, and a new uncertainty-motivated
loss function. We report preliminary results on the validation portion of the
BRATS 2018 dataset.

2 The DeepSCAN Family of Models

We describe here the constituent parts of the DeepSCAN family of models.

2.1 Densely Connected Layers and Densenet

Densenet [7] is a recently introduced architecture for image classification. The
fundamental unit of a Densenet architecture is the densely connected block, or
dense block. Such a block consists of a number of consecutive dense units, as
pictured in Fig. 1. In such a unit, the output of each convolutional layer (where
a layer here means some combination of convolutional filters, non-linearities and
batch normalization) is concatenated to its input before passing to the next
layer. The goal behind Densenet is to build an architecture which supports the
training of very deep networks: the skip connections implicit in the concatenation
of filter maps between layers allows the flow of gradients directly to those layers,
providing an implicit deep supervision of those layers.

Fig. 1. A Dense unit, as used in the DeepSCAN architecture
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In the original Densenet architecture, which has state-of-the-art performance
on the CIFAR image recognition task, dense blocks are combined with transition
blocks: non-densely connected convolutional layers, followed by a maxpooling
layer. This helps to control parameter explosion (by limiting the size of the input
to each dense block), but also means that the deep supervision is not direct, at
the lowest layers of the network. This Dense-plus-transition architecture was also
adopted by Jegou et al. [8], whose Tiramisu network is a U-net-style variation
of the Densenet architecture designed for semantic segmentation.

In our previous paper [12], we dispensed with the transition layers: this
means, in effect that the whole network (except for the final one by one convolu-
tions) is a single dense block. This led to networks which were highly parameter
efficient, but which had a very large memory footprint. In the current paper we
hybridize this approach with the down/up-sampling approach of U-net [15].

Fig. 2. Two DeepSCAN architectures, as applied to brain tumor segmentation

2.2 Dilated Convolutions

Some kind of pooling is found in almost all CNNs for image classification. The
principal reason to use pooling is to efficiently increase the receptive field of the
network at deeper levels without exploding the parameter space, but another
common justification of pooling, and maxpooling in particular, is that it enables
some translation invariance. Translation invariance is of course undesirable in
semantic segmentation problems, where what is needed is instead translation
equivariance: a translated input corresponding to a translated output. To that
end, we use layers with dilated convolutions to aggregate features at multiple
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Fig. 3. Units of the DeepSCAN architecture: (a) 3D convolutional blocks, (b) Down-
sampling block, (c) Dense block, with dilation M, (d) upsampling block. Except in the
3D block, all convolutions are preceded by 2 by 2 reflection padding.

scales. Dilated convolutions, sometimes called atrous convolutions, can be best
visualized as convolutional layers “with holes”: a 3 by 3 convolutional layer with
dilation 2 is a 5 by 5 convolution, in which only the centre and corner values of the
filter are nonzero, as illustrated in Fig. 4. Dilated convolutions are a simple way
to increase the receptive field of a classifier without losing spatial information.

Fig. 4. Left, a 3 by 3 kernel. Right, a 3 by 3 kernel with dilation 2, visualized as a 5
by 5 kernel
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2.3 Label-Uncertainty Loss

We introduce a new loss function, which we call label-uncertainty loss, inspired
by the recent trend in networks able to quantify their own uncertainty. In brief,
for each voxel, and each segmentation sub-task (whole tumor, tumor core, and
enhancing tumor) the network outputs two probabilities: the probability p that
the label is positive, and the probability q that the label predicted does not
correspond to the label in the ground-truth annotation (i.e., the probability of
a ’label flip’). IF BCE stands for the standard binary cross-entropy loss, and x
is the target label, then the loss function we minimize is:

BCE(p, (1 − x) ∗ q + x ∗ (1 − q)) + BCE(q, z) (1)

where
z = (p > 0.5) ∗ (1 − x) + (p < 0.5) ∗ x (2)

If q is close to zero, and the label is correct, the first term is approximately
the ordinary BCE loss: if q is close to 0.5 (representing total uncertainty as to the
correct label) the first term tends to zero. This loss therefore attenuates loss in
areas of high uncertainty, in a similar fashion to the heteroscedastic loss of [10].
However, in [10] the uncertainty in the classification is modeled by assuming that
logits have a Gaussian distribution, and estimating the variance of that Gaussian:
this cannot be performed directly by gradient descent, instead requiring Monte
Carlo sampling of the Gaussian distribution to perturb the output of the network.
By contrast, label-uncertainty can be incorporated directly into the loss-function
of the network. In fact, the label-uncertainty q can also be viewed as a variance: if
we assume that the logit of p follows not a Gaussian but a logistic distribution (as
is the standard assumption in classical statistical learning) with mean logit(p),
then if the probability that a sample from that distribution is below zero is q,
the variance of the logistic distribution is abs(logit(p)/logit(q)).

Since the label-uncertainty loss incorporates the current prediction in evalu-
ating the probability of a label flip, it is important to apply the loss to a network
which has already been pre-trained with ordinary BCE loss: for each of our net-
works we trained to convergence with ordinary BCE loss (typically 10–20 epochs)
then switched to using label uncertainty loss. We observed more stability when
using both ordinary BCE and label uncertainty. Further, to counter the effects
of label imbalance, we adopt the technique of focal loss from [11]: therefore, the
final loss function used was

(1 − px)γ(BCE(p, x) + BCE(p, (1 − x) ∗ q + x ∗ (1 − q)) + BCE(q, z)) (3)

where px is p if x is 1 and (1-p) otherwise. For our experiments the value of
γ used was 2.

2.4 The DeepSCAN Architecture

The design principles of the DeepSCAN models are (i) non-isotropic input vol-
umes, with one dimension being rather small (in this case, 5 by 192 by 192)
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(ii) initial application of enough 3D convolutions to reduce the short dimen-
sion to length 1, and (iii) a subsequent hybrid of 2D U-net and 2D Densenet,
in which one or steps of convolution and maxpooling are followed by a num-
ber of densely connected blocks of dilated convolutions, with the dilation factor
increasing with increasing depth, and then finally U-net-style upsampling blocks
with skip connections from the previous downward path. The building blocks of
these networks are shown in Fig. 3, and two architectures built from these blocks
are shown in Fig. 2.

3 Initial Application to Brain Tumor Segmentation

Brain Tumor segmentation has become a benchmark problem in medical image
segmentation, due to the existence since 2012 of a long-running competition,
BRATS, together with a large curated dataset [1–3,13] of annotated images.
Both fully-automated and semi-automatic approaches to brain-tumor segmen-
tation are accepted to the challenge, with supervised learning approaches dom-
inating the fully-automated part of the challenge. A good survey of approaches
which dominated BRATS up to 2013 can be found here [5]. More recently, CNN-
based approaches have dominated the fully-automated approaches to the prob-
lem [6,9,14].

We trained two networks, as pictured in Fig. 2. The networks were built
using Pytorch, and trained using the Adam optimizer. Rather than using a
softmax layer to classify the three labels (edema, enhancing, other tumor) we
employ a multi-task approach to hierarchically segment the tumor into the three
overlapping targets: whole tumor, tumor core and enhancing: thus the output
of the network is three logits, one for each target. In addition, as per the label
uncertainty loss, for each target the network outputs one label-flip logit.

3.1 Data Preparation and Homogenization

The raw values of MRI sequences cannot be compared across scanners and
sequences, and therefore a homogenization is necessary across the training exam-
ples. In addition, learning in CNNs proceeds best when the inputs are standard-
ized (i.e. mean zero, and unit variance). To this end, the nonzero intensities
in the training, validation and testing sets were standardized, this being done
across individual volumes rather than across the training set. This achieves both
standardization and homogenization.

4 Cascaded Non-brain-tissue Removal

The BRATS dataset was assembled from a large number of data sources, and
does not comprise raw imaging data: the volumes are re-sampled to 1 mm isovox-
els, and in addition have been automatically skull-stripped. Unfortunately, the
results of this skull-stripping vary: see Fig. 5 for an example with large amounts of
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residual skull tissue. Other examples have remnants of the dura or optic nerves.
This remaining tissue can confound classification in two ways: it can be misiden-
tified by the classification algorithm (though this is increasingly less likely as
classifiers improve) and it can affect the distribution of the intensities in a vol-
ume, adversely impacting the global standardization of voxel values. To combat
this effect, we used a cascade of networks to first segment the parenchymia from
the poorly skull-stripped images, followed by a second network which identifies
the tumor compartments as above. The ground truth for the brain mask was
obtained by applying FSL-FAST to the T1 post Gadolinium imaging, as this
tended to have the best definition in all three planes. The brain tissue label was
assembled by taking the union of tumor, white matter and grey matter labels,
and then taking the largest connected component.

Fig. 5. A FLAIR image from the BRATS2018 testing dataset before (Left) and after
(Right) additional brain extraction by our method

This brain-mask tissue label was used during training to ensure the training
of networks robust to the presence or absence of non-brain tissue. In addition,
we added a brain-mask label to the existing labels in the ground-truth for train-
ing, so that during testing a brain-mask for additional skull-stripping could be
generated.

4.1 Data Augmentation

During training, we applied the following data augmentation: randomly flipping
along the midline, random rotations in a randomly chosen principal axis, and
random shifting and scaling of the standardised intensity values. In addition, the
classifier was randomly shown either the original images, or images masked with
the brain-mask generated as above.
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4.2 Training

The network segments the volume slice-by slice: the input data is five consecutive
slices from all four modalities, Ground truth for such a set of slices is the lesion
mask of the central slice. Input images were initially cropped to remove as much
empty space as possible. Batch size during training was 2. As a result, the input
tensor to the model has dimensions 2 * 4 * 5 * 192 * 192. Models were trained
using a cosine-annealing learning rate schedule, in which the learning rate was
varied between 1e−5 and 1e−9 during each epoch.

Fig. 6. Above: Whole tumor classified in the (sagittal, coronal, axial) plane. Below:
Label-flip probability of the (sagittal, coronal, axial) segmentations

Slices from all three directions (sagittal, axial, coronal) were fed to the classi-
fier for training. Examples of the different segmentations in those three directions
(just for the whole tumor label) can be seen in Fig. 6.

4.3 Application of the Classifier

The initial application of the classifier is as follows: the volume is classified in
the axial, sagittal and coronal planes separately, by both trained networks. This
yields six logit maps, and six label-flip logit maps, for each target label. The
logit maps were binarized with a threshold of 0 (corresponding to a standard
threshold of 0.5 on the sigmoid of the logit).
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Voxel-wise label confidence weights were then derived from the label-flip log-
its as the minimum of 0 and the negative of the label-flip logit, so that very
confident classifications (corresponding to very large negative label-flip logits)
contribute more than less-confident classifications. These weights were than used
to ensemble the binarized maps.

The brain-mask label from this ensembled classification was then used to
mask the input modalities, and the volume was again classified by both networks
in all three directions. This yielded another six logit maps (with corresponding
label-flip logit maps) for each tissue compartment. The final segmentations for
each compartment were produced by the same uncertainty weighted ensembling
as above, over all twelve label maps.

5 Results

Results of an ablation study are shown in Table 1, where we show results with
and without label-uncertainty-based ensembling and brain extraction. While no
single model showed dominance, the model with both novel features achieved
the best results in one of Dice or Hausdorff distance for all three compartments,
so was selected as the final model. Results on the BRATS 2018 testing data are
shown in Table 2: this method gained joint 3rd place in the challenge [4].

Table 1. Results on the BRATS 2018 validation set using the online validation tool.
Base denotes the ensemble of two DeepSCAN models over three directions, where
ensembling is achieved by averaging logits. “+ U” denotes using averaging over label
uncertainty instead of logits. “+ BE” denotes averaging over both original and brain-
extracted inputs.

Dice-ET Dice-WT Dice-TC HD95-ET HD95-WT HD95-TC

Base 0.795 0.901 0.854 3.61 4.26 5.37

Base + U 0.792 0.901 0.847 3.60 4.06 4.99

Base + BE 0.797 0.901 0.851 3.60 4.41 5.58

Base + U + BE 0.796 0.903 0.847 3.55 4.17 4.93

Table 2. Results of the ensemble with brain extraction and uncertainty-driven ensem-
bling on the BRATS 2018 testing set

Label Dice-ET Dice-WT Dice-TC HD95-ET HD95-WT HD95-TC

Mean 0.73189 0.88593 0.79926 3.48082 5.5185 5.5347

StdDev 0.27443 0.10182 0.26008 5.52176 9.34294 8.14881

Median 0.83199 0.91786 0.90847 1.73205 3.0 2.82843

25quantile 0.73922 0.87113 0.82327 1.41421 2.23607 1.73205

75quantile 0.88342 0.9396 0.93653 2.82843 5.09902 5.52101
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