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Abstract. A semi-automatic image segmentation method, called SAMBAS,
based on workflow familiar to clinical radiologists is described. The user ini-
tializes 3D segmentation by drawing a long axis on a multi-plane reformat
(MPR). As the user draws, a 2D segmentation updates in real-time for inter-
active feedback. When necessary, additional long axes, short axes, or other
editing operations may be drawn on one or more MPR planes. The method
learns probability distributions from the drawing to perform the MPR seg-
mentation, and in turn, it learns from the MPR segmentation to perform the 3D
segmentation. As a preliminary experiment, a batch simulation was performed
where long and short axes were automatically drawn on each of 285 multi-
spectral MR brain scans of glioma patients in the 2018 BraTS Challenge training
data. Average Dice coefficient for tumor core was 0.86, and the Hausdorff-95%
distance was 4.4 mm. As another experiment, a convolution neural network was
trained on the same data, and applied to the BraTS validation and test data. Its
outputs, computed offline, were integrated into the interactive method. Ten
volunteers used the interface on the BraTS validation and test data. On the 66
scans of the validation data, average Dice coefficient for core tumor improved
from 0.76 with deep learning alone, to 0.82 as an interactive system.
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1 Introduction

Evidence from cancer researchers suggests that extraction of quantitative variables
from medical images can contribute more information for decision support in man-
agement of cancer patients. Specifically, quantitative metrics can improve both (1) di-
agnostic and prognostic accuracy; as well as (2) longitudinal monitoring of patient
response [1]. Criteria for monitoring radiographic brain tumor progression include the
Macdonald criteria [2], Response Evaluation Criteria in Solid Tumors (RECIST) [3, 4],
WHO criteria [5], and RANO criteria [6].

Currently, radiological studies are generally limited to detection and staging along
with qualitative descriptions. Quantitative descriptors are not yet in the standard of care
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primarily due to a lack of infrastructure and tools to derive, test, and deploy these
quantitative metrics at the point-of-care for all patients. Currently available tools to do
this are limited to research or clinical trials, and have not been widely deployed as they
lack the speed, precision and consistency required for wider clinical use [7]. The
amount of time required to delineate lesion boundaries correctly could be intrusive to
the radiologist’s workflow. Delineation can be performed by manually drawing the
tumor boundary on each image slice, by semi-automatically guiding an algorithm, or
by fully automated methods. In either the semi-automated or fully automated methods,
editing is necessary. Although manual delineation offers complete control to the user,
humans exhibit great variability and the process is very time-consuming. Even if an
automatic or semi-automatic method were to suffer a shortcoming in accuracy, as long
as there is consistency in defining the boundary, then the volume change or change in a
quantitative feature may be tracked more precisely.

For MR brain tumors, recent research with fully automated segmentation, espe-
cially based on deep neural networks, has been promising [8]. SAMBAS (Semi-
Automated Map-BAsed Segmentation) differs from CAD (Computer Aided Detection)
because it relies on a radiologist to make an indication. The motivation is adoption by
clinical radiologists who desire full-control over the segmentation, real-time feedback,
an algorithm that is ready to run immediately without the need to first be trained on a
large database from their site, and an algorithm whose rationale behind decisions is
explainable. We expect that real-time guidance of a semi-automated approach may
often have faster workflow than editing of a fully automated method.

The vital part of any measurement tool is an interface that is both familiar and
effortless. Drawing the longest axis across a lesion is a natural choice for initiating
contours because radiologists are already accustomed to drawing the long axis.
Oncologists participating in clinical trials follow published international criteria for
objectively gauging the extent and progression of disease. The Macdonald, RECIST,
and WHO criteria each incorporate long axis measurements. However, inherent chal-
lenges with axis-based criteria have been reported for aggressive brain tumors [9], thus
motivating the discovery of volumetric-based criteria with similar familiarity as axis-
based criteria.

Besides familiarity, there are several more goals of volumetric contouring. One goal
is to achieve inter-observer consistency, while also catering to individual preferences
for accuracy and style. Consistency results from initialization strategies that are
reproducible, such as generating 3D volumetric contours from a straight stroke rather
than free-form drawing. Tailoring to individual preferences is accomplished by editing
tools prepared for whenever the initial contours may be unsatisfactory. Another goal is
to provide a contingency plan in case the radiologist is both unsatisfied with the
contours, and unwilling to invest the requisite time to edit them. Radiologists should be
given the choice of confirming either the contours (thereby enabling volumetric
measures), or just the long axis, which has already been drawn, and is held in reserve as
an instant alternative. Yet another goal is automatic, large-scale, quantitative validation.
Given hundreds of datasets that have been manually contoured, batch processing can
be implemented by calculating the long axis from each expert’s contours, and
employing the long axis as the simulated user input. Yet another goal is to alleviate the
need to select tools from a confusing suite of options. Ideally, there is exactly one tool

442 D. Gering et al.



in a reading room, generally applicable to all organs, yet simultaneously specialized
with organ-specific features. The organ is automatically identified upon tool
initialization.

SAMBAS aims to satisfy all the aforementioned goals, namely familiarity, con-
sistency, individualism, contingency, automatic validation, and general applicability
yet specialization. While advancements in processing speed have propelled deep
learning (DL) in various fields, medical image analysis is missing the mass quantities of
new labeled data needed for training artificial intelligence networks [10]. The multi-
modal Brain Tumor Segmentation challenge (BraTS) represents a pioneering step in
this direction [11, 12]. One of the goals of the software was to generate such contours
on new scans, at the point of read, which in turn, can serve as the labeled image data for
DL in subsequent clinical application.

2 Methods

The proposed system consists of an interactive algorithm and two compute-intensive
components, which are whole-brain tissue segmentation and deep learning. Each has a
run-time of roughly one minute on a typical PC, so they are run offline prior to a user’s
interaction with the system. While the interactive algorithm is employed by a user to
segment only the core tumor, the offline components support partitioning of the tumor
into its constituent parts: edema, necrosis, and actively enhancing regions.

The integration of all elements into one system is presented first, followed by the
offline elements and the interactive algorithm, along with associated experiments.

2.1 System that Integrates Offline Components with User Interaction

Figure 1 presents a system flowchart. User interaction occurs in real-time because only
a portion of the image is being segmented since whole-brain analysis occurred earlier.

Fig. 1. Two components run offline prior to the user interacting with the system.
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As the user draws a long axis on an image, only the core tumor is segmented in 2D
with real-time feedback. Figure 2 displays a screenshot of the red 2D contour
responding interactively to the drawn blue axis. When the user clicks a button to indicate
all drawing is complete, then a 3D segmentation process runs for roughly 1–3 s, relying
on the output of deep learning and tissue segmentation to find the edema associated with
that particular core tumor. When a scan contains multiple distinct tumors, the user must
draw a separate long axis for each tumor.

As the user draws a long or short axis, whenever all endpoints of the axes are
proximal to the boundary of core tumor, as found by deep learning, then the seg-
mentation “snaps to” the output of deep learning. This process is depicted in Fig. 2.
The snapping is evident to the user because a snapped contour is drawn more coarsely
pixilated due to the fact that the interactive segmentation occurs on super-sampled
images, whereas deep learning occurred on original images. When snapping is unde-
sired, the user can simply hold down the CTRL key to disable it while drawing.

The 66 validation scans provided by the BraTS competition contained 89 tumors,
of which 35 were “snapped to”. Therefore, snapping played a role on 39% of tumors.

2.2 Whole-Brain Tissue Segmentation

The tissue segmentation classifies every brain voxel as belonging to one of several
tissue types, including cerebrospinal fluid (CSF), gray matter, white matter, vessels,
ventricles, and disease. Gray and white matter are found by performing Bayesian
classification of the T1-weighted, contrast-enhanced image using the Expectation

Fig. 2. These are three screenshots taken during a user’s real-time interaction while drawing the
long axis (blue). LEFT: The user has started drawing a long axis, but has only partially traversed
the tumor at the time of the screen capture. MIDDLE: The user has over-drawn the lesion to show
how the red contour always presents a reasonable result given strong image contrast in some
areas, and little to none in others. RIGHT: The user has placed both endpoints of the long axis on
the boundary of the output of deep learning. Consequently, the red contour “snaps to” deep
learning’s output contour even though the true longest axis in the plane was not indicated. (Color
figure online)
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Maximization (EM) algorithm [21]. One element
of Bayesian classification is the probability that a
voxel belongs to a certain tissue class prior to
observing its brightness. When this prior proba-
bility varies across the image, it is referred to as a
spatially-varying prior (SVP). The SVP is esti-
mated through affine registration of the SPM atlas,
as shown in Fig. 3.

Rules of logic are applied to the set of all four
MR spectra to derive the other tissues. For exam-
ple, enhancing tumor is described by areas that
show hyper-intensity under contrast-enhancement
when compared to the non-enhanced image, but
also when compared to healthy white matter.

The resultant tissue segmentation will be used
by the integrated system for anatomic context. For
example, it will know to exclude vessels and
ventricles from tumors.

2.3 Deep Learning Segmentation

Following the recent increasing successes of deep learning approaches in automated
organ and tumor segmentations [13–19], a convolution neural network (CNN) was
used. The CNN is based on the 3D U-Net architecture by Isensee et al. [15] (Fig. 4),
which had one of the top scores in the 2017 BraTS Challenge [20]. Briefly, the input

Fig. 3. The SPM atlas features an
average of 305 scans (upper right)
and probability maps for CSF (upper
right), white matter (lower left), and
gray matter (lower right).

Fig. 4. 3D U-Net architecture based on Isensee et al. [3].
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image data is set to 128 � 128 � 128 voxels, constrained by the limited memory in
the GPU. Processing from left to right, the 3D image volume is sequentially reduced in
spatial resolution with multiple 3 � 3 � 3 convolution layers while increasing the
number of filters or feature maps as the levels move deeper. Once the lowest level is
reached, the extracted feature maps are then upsampled to sequentially restore the
spatial resolution at each level, concatenating with feature maps preserved during the
downsampling to help restore lost information. The Softmax function classifies the 3
tumor classes. Dropouts with probability 0.3 are included to minimize overfitting.

A set of MR training data consisting of brain scans of 210 subjects with high grade
glioma (HGG) and another 75 with low grade glioma (LGG) was provided by the
BraTS competition. Each subject has a T1 weighted, a post-contrast T1-weighted, a
T2-weighted, and a FLAIR MR image. In addition, a segmented tumor mask that
contains demarcations for whole tumor, core tumor and enhancing tumor, manually
demarcated by expert physicians, was also provided as the ground truth for evaluation.
The images were preprocessed prior to supervised training by cropping to remove the
extraneous background and preserve only the brain, resizing to 128 � 128 � 128, and
normalizing the MR intensities of each modality by subtracting the mean and dividing
by the standard deviation.

During the supervised training, the 285 subject data were randomly split into
training and validation dataset (80%–20%), each consisted of image volumes from the
four different modalities and segmented truths. The training dataset was fed into the 3D
U-Net model for optimization and the segmented truths were used for evaluations
during the backpropagation. The model was tested at each step with the validation
dataset, on which the model had not been trained. Table 1 lists the parameters used in
the training of the CNN model. Batch size of one was used, despite the lower per-
formance, in order to load the entire 285 subject image volumes into the limited
memory available in the GPU.

To further account for the class imbalance where there is much more background
pixel data than tumor, other than cropping, a multiclass Jaccard loss function was used
[14]. The four classes include 0 for background, 1 for tumor core, 2 for edema and 4 for
enhancing tumor.

Table 1. List of parameters used in training the CNN model.

Parameter Value

Optimizer Adam
Batch size 1
Initial learning rate 5 � 10−4

Number of epochs at which learning rate is reduced 10
Learning rate reduction factor 0.5
Number of epochs at which training stopped 50
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The loss function is expressed in Eq. 1, where u is the prediction of the CNN and v
is from the ground truth segmentation value, i is the pixel number, and k is each class in
all K ¼ 4 classes. The Jaccard coefficient is a measure of similarity between the seg-
mented prediction and truth image volumes, where higher value indicates greater
overlap. The multiclass version is the intersection over union of the two volumes
averaged over the four classes. A negative term was added to the loss function to ensure
the minimum loss function was optimized. CNN development used the open-source
machine learning library, TensorFlow, and neural networking API, Keras.

2.4 Interactive MPR Segmentation

The interactive algorithm is implemented as a probabilistic framework with efficient
user control. Like a digital simulation of a traditional light box on which radiologists
used to view film, the 3D volume is visualized by displaying 2D planes. A Multi-Plane
Reformat (MPR) refers to reformatting more than one plane, and we display a trio of
planes side-by-side, such that there are axial, coronal, and sagittal orientations.

The user initializes the segmentation process by drawing a long axis on one plane
of the MPR. As the user draws the long axis, a 2D segmentation updates in real-time
for interactive feedback. The feedback has proven to be very helpful for the user to
know precisely where to place the endpoint of the axis. Upon release of the mouse, 2D
segmentation occurs immediately on the other MPR planes.

When the 2D contour is unsatisfactory, an optional short axis may be drawn
perpendicular to the long axis. Other editing operations are available, such as a “ball
tool” for drawing with a digital brush. A correct 2D segmentation is important since
probability distributions are learned from the 2D segmentation to be employed in
segmenting the other MPR planes.

When the contours on other MPR planes are unsatisfactory, then the user can draw
there with the same editing tools, along with the option for drawing a long axis and
short axis. This is especially useful for lesions which are irregularly shaped or oriented
obliquely. Once satisfied, the user clicks a button to initiate 3D segmentation.

2.5 3D Segmentation

Multivariate Bayesian classification [21] labels image voxels as belonging to one of
two classes, Background or Foreground. Classification combines the likelihood of class
membership based on voxel brightness, with the probability of membership prior to
observing brightness. The likelihoods are conditional probability distributions that do
not vary across the image, while the prior probabilities are spatially varying, and a
function of distance from region boundaries.

The user directly drives the segmentation process by manipulating four types of
regions, where some regions govern the likelihoods, while some regions govern the
prior probabilities. Various regions are described in Table 2, and illustrated in Fig. 5.
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The sizes and poses of regions are automatically derived from the long axis. While
the long axis describes lesion extent along one dimension, an initialization stage
estimates lesion extent along other dimensions by analyzing orthogonal scout planes
given statistical sampling along the long and short axes. Probability distributions are
modeled parametrically as Gaussian Mixture Models (GMM) [22] while placing the
Inclusion and Containment regions, and as non-parametric distributions thereafter.

Background regions are automatically placed by searching the vicinity outside the
Containment region, and within the body outline, while maximizing the Mahalanobis
distance [21] from the Inclusion region. Once Background and Inclusion regions are
initialized, the voxels within are used to perform Parzen windowing [21] to estimate the
likelihoods for Bayesian classification.

Noise and artifacts in CT vary by dose and choice of reconstruction type and
kernel, and in MR by field strength, RF coil configuration, and protocol parameters, so
Bayesian classification is augmented with a Markov Random Field [23] with 3 itera-
tions of mean-field approximation.

Table 2. Regions which drive probabilities.

Region Color in
Fig. 1

Description

Inclusion Green All voxels within belong to the Foreground class, and
statistically sample it

Containment Yellow All voxels outside belong to the Background class
Background Blue &

pink
Statistically typify Background class

Avoidance Not shown Spatially prohibit Foreground without affecting statistics

Fig. 5. Some regions are initially configured as ellipsoids, and then become warped. The image
shown is a CT since the interactive algorithm was designed to be general purpose.
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Fig. 6. Axial, coronal, and sagittal planes of MPR are shown from top to bottom. The blue
ellipse was fit to the yellow contour of ground-truth in order to generate the green long and short
axes. This process simulated a human user manually drawing on MPR. (Color figure online)
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The output is a 3D mesh fit to voxel classification by adapting vertices connected
by virtual springs to their neighbors to provide a regularizing force that smooths the
surface. The true long axis is measured, which may not lie in any orthogonal plane.

2.6 Experiment with Simulated Drawing of Long Axes

As a preliminary experiment, a batch simulation was performed where long and short
axes were automatically drawn on each of 285 multispectral MR brain scans of glioma
patients in the BraTS 2018 training data. To achieve this, the ground-truth was ana-
lyzed to find an appropriate slice on which to draw the long axis. Given the range of
slices that contained any ground-truth, the central third of this range was considered,
and from that subset, the slice with the largest area of ground-truth was chosen. An
automatic process then drew the long axis across the ground-truth on that slice.

In order to simulate the type of long axis that a human user might draw, the axis
position was favored to be more medial than the true longest axis. Therefore, on each
plane, an ellipse was fit by Principle Component Analysis (PCA) [21] to the seg-
mentation on that slice. The long axis with the same orientation as the major axis of the
ellipse was found. The short axis was then found as the longest axis perpendicular to
this, as shown in Fig. 6.

The center of the long axis was used for the center of the reformatted sagittal and
coronal planes to comprise a 3-plane MPR. Then long and short axes were drawn in
similar manner on all planes. The drawn axes precipitate MPR segmentation. Figure 7
shows a few examples.

3 Results

Multi-institutional, routine clinically-acquired pre-operative multispectral MR scans
were provided by the 2018 BraTS challenge [24–26]. The data had been preprocessed
to be co-registered to the same anatomical template, interpolated to the same resolution
(cubic mm), and skull-stripped.

Segmentation accuracy was computed by uploading labeled images to the CBICA
Image Processing Portal, which measured statistics for active (enhancing) tumor, whole
tumor, and tumor core. While the ground truth was available for the 285 training cases,
there were an additional 66 validation cases, and 191 test cases where ground truth was
unavailable to participants.

3.1 Experiment with Simulated Drawing of Long Axes

The T1-weighted post-contrast scan was combined with the T2-weighted scan to create
a dual-spectra image that was input to the interactive algorithm. Since long axes where
drawn on core tumor, this experiment segmented only that structure. Table 3 lists
results of the experiment described in Sect. 2.6.
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3.2 Experiment with Deep Learning Alone

All four MR modalities of the 66 validation cases were presented to the trained CNN
model, and Table 4 presents the results.

3.3 Experiment with User Interaction

Ten volunteers used the interface on the BraTS validation and test data. On the 66
scans of the validation data, average Dice coefficient on tumor core improved from 0.76
with deep learning alone, to 0.82 as an integrated, interactive system. The Hausdorff-
95% distance improved from 8.4 to 7.5 mm, as detailed in Table 5. Progress since the
challenge has improved scores further to 0.87 Dice and 4.9 mm, which is presently the
lowest Hausdorff distance on the BraTS leaderboard.

Fig. 7. MPR segmentation (red) depicted relative to ground-truth contours (yellow) and
long/short axes (green) on a reformatted sagittal slice. MPR segmentations (not final 3D) were
measured to have 0.90 average Dice, compared to ground-truth, for 855 planes of 285 cases.
(Color figure online)

Table 3. BraTS 2018 validation results with simulated user interaction (core tumor only).

Dice Sensitivity Hausdorff-95%

Mean 0.862 0.893 4.38
Std. Dev 0.060 0.081 3.18
Median 0.873 0.915 3.61

Table 4. BraTS 2018 validation results with no user interaction.

Dice Sensitivity Hausdorff-95%
Active Whole Core Active Whole Core Active Whole Core

Mean 0.696 0.878 0.763 0.823 0.893 0.883 6.92 10.1 8.35
Std. Dev 0.200 0.0378 0.256 0.134 0.102 0.127 11.0 16.7 11.5
Median 0.848 0.894 0.918 0.836 0.933 0.938 1.41 3.00 2.83
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On the 191 scans of the test data, the average Dice coefficient was 0.75 and median
0.86. Compared with the simulation experiment where mean and median were quite
similar, the disparity between mean and median here suggest that human volunteers
and ground-truth disagreed, curtailing certain scores. Table 6 presents the details.

The Hausdorff-95% distance was nearly a factor of two lower on the simulation
experiment, when compared with the other three experiments, which shows the value
of knowing precisely where to draw axes. An interesting observation is that the sen-
sitivity for core tumor was higher without user interaction. The median was even
slightly higher even though the mean was much lower. This suggests DL fared better
than humans on obvious tumors, but users provided essential aid when DL missed
badly.

4 Discussion

In comparison with other semi-automatic tools, products from Invivo [27] and Mirada
[28] feature initialization by a single click, whereas the additional information con-
tained in SAMBAS’ long axis bolsters reliability relative to a click. Perhaps the most
similar algorithm to SAMBAS is the GrowCut algorithm [29, 30] implemented in the
3D Slicer [31]. Both have general applicability, and a concept of Background and
Foreground regions. However, GrowCut is not initiated as quickly as a drag across the
long axis, and one study measured lung lesion contouring to require an average of
10 min [32], whereas a clinical goal is sub-minute. Perhaps the most similar initial-
ization method is [33] for the Random Walker algorithm [34], because a clicked point
or stroke commences 2D segmentation from which Background and Foreground seeds
are generated for 3D segmentation. However, the SAMBAS approach intentionally

Table 5. BraTS 2018 validation results with real user interaction.

Dice Sensitivity Hausdorff-95%
Active Whole Core Active Whole Core Active Whole Core

Mean 0.730 0.890 0.823 0.752 0.885 0.791 4.37 5.53 7.53
Std. Dev 0.264 0.057 0.173 0.244 0.0865 0.203 6.86 7.06 10.9
Median 0.828 0.904 0.885 0.807 0.904 0.870 2.50 3.87 3.74

Table 6. BraTS 2018 test results with real user interaction.

Dice Hausdorff-95%
Active Whole Core Active Whole Core

Mean 0.643 0.852 0.750 4.88 8.15 8.44
Std. Dev 0.300 0.135 0.267 5.77 12.9 12.7
Median 0.765 0.896 0.864 3.00 4.12 4.24
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seeks statistical separation rather than a simple circumscribed shape for Background.
GrowCut and the Random Walker both lack the two additional regions that SAMBAS
adds, Containment and Avoidance, which make editing expeditious. Furthermore,
SAMBAS differs by its Bayesian framework, which in conjunction with the added
regions, make it possible to seamlessly incorporate organ-specific processing, and to
employ DL-based CAD to derive additional SVP probability maps.

Quantitative results were promising, while leaving ample opportunity for
improvement. During the interactive experiment, the long axis was drawn manually by
human users, with the guidance of real-time MPR segmentation as constructive feed-
back. The advantage of feedback did not produce better quantitative scores than the
batch-generated long and short axes of the simulation experiment. The drop-off in
scores between the simulation experiment on training data, and the interactive exper-
iment on validation data, indicates the value of knowing where to draw.

The novel “snap to” feature introduced here may offer a solution to the problem of
false positives with CAD systems. Only those CAD findings which are drawn on by the
user will be output. The other CAD findings could be withheld from clinicians to avoid
biasing their judgment.

The interactive algorithm was developed to be general-purpose, and is well-suited
for CT lung and liver lesions. The MR-specific and brain-specific enhancements pre-
sented herein are a new addition, which is a work in progress, and we look forward to
upgrading the tissue segmentation and deep learning components to improve the
overall system. The fact that the integrated system outperformed deep learning alone on
the validation data bodes well for interfaces which unite neural networks with expert
users.
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