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Abstract. Automated segmentation of brain tumors in multi-channel Magnetic
Resonance Image (MRI) is a challenging task. Heterogeneous appearance of
brain tumors in MRI poses critical challenges in diagnosis, prognosis and sur-
vival prediction. In this paper, we present a novel approach for glioma tumor
segmentation and survival prediction with Deep Learning Radiomics Algorithm
for Gliomas (DRAG) Model using 3D patch based U-Net model in Brain Tumor
Segmentation (BraTS) challenge 2018. Radiomics feature extraction and clas-
sification was done on segmented tumor for overall survival (OS) prediction
task. Preliminary results of DRAG model on BraTS 2018 validation dataset
demonstrated that the proposed method achieved a good performance with Dice
scores as 0.88, 0.83 and 0.75 for whole tumor, tumor core and enhancing tumor,
respectively. For survival prediction, 57.1% accuracy was achieved on the
validation dataset. The proposed DRAG model was one of the top performing
models and accomplished third place for OS prediction task in BraTS 2018
challenge.
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1 Introduction

Glioma is the most frequent primary brain tumor. It originates from glial cells and can
be classified in High Grade and Low Grade depending upon the aggressiveness.
Gliomas may have different degrees of aggressiveness, variable prognosis and several
heterogeneous histological sub-regions. These are described by varying intensity
profiles across different Magnetic Resonance Imaging (MRI) modalities, which reflect
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diverse tumor biological properties [9]. De-spite of recent advances in automated
algorithms for brain tumor segmentation in multimodal MRI scans, the problem is still
a challenging task in medical imaging analysis [6, 7, 12].

Prior to BRATS challenge, researchers tested their proposed algorithms on local
datasets and there was no gold standard available for fair evaluation of methods
globally. BraTS challenge provided global platform for researchers to evaluate their
proposed algorithms on publically available dataset with leaderboard. This year BraTS
challenge was divided in two parts 1. Segmentation of brain tumor with intra-tumor
parts 2. Prediction of overall survival of the patients in number of days based on
imaging features.

Many computational methods based on texture analysis, probabilistic models,
active contours, random forests are proposed for tumor segmentation over decades
[10]. Several advances were made in active contours where either an initial seed point
was mentioned which would grow till the boundaries of the tumor or a bounding box
was drawn across the abnormal region which would further confine to tumor bound-
aries. Figure 1 shows FLAIR, T1, T1ce, and T2 images with intra-tumor parts- Green
for Edema, Blue for Enhancing tumor and Red for Tumor Core. Researchers had
proposed methods based on Non-Negative Matrix Factorization where a data matrix
was generated from MR data which acted as a feature representation. This data matrix
was further clustered with Fuzzy C-means clustering algorithm for brain tumor seg-
mentation [14].

Fig. 1. MRI modalities with intra-tumor parts. Edema in yellow, enhancing tumor in blue and
necrotic tumor is shown in red color (Color figure online)
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Deep Learning algorithms have been outperforming over all other the state of the
art methods for segmentation, classification and detection applications. Researchers
have proposed application specific models for which Convolutional Neural Networks
(CNN) is the basic building block of the architecture. The advantage of CNN is that it is
computationally cheaper compared to Fully Convolutional Networks (FCN). The
implementation of CNN is successful because of the advancement in the computational
power of the machines. This enables to de-sign neural network models with deep
architecture to extract features in an image. Researchers had proposed several pixel
classification based approaches for segmentation task where a window was considered
around a pixel and the class of the window was the class of center pixel. U-Net based
models have outperformed over traditional machine learning methods in bio-medical
image segmentation [11]. Recently, there has been an increase in popularity of 3D
CNNs which are effective in segmentation task at the expense of additional compu-
tational complexity compared to other state of the art algorithms [5].

2 Method

We developed patch based 3D U-Net model for tumor segmentation and evaluated
efficiency of radiomic features for OS prediction named as ‘Deep Learning Radiomics
Algorithm for Gliomas (DRAG) Model’. There was high class imbalance between
tumor pixel and rest of the normal brain pixels in the BraTS datasets. This led to biased
training of the model as the loss function was affected by normal brain pixels as
compared to the tumor pixels. The problem became more challenging during intra-
tumor segmentation. To overcome this issue, we adopted a patch-based training
approach. Fixed sized 3D patches were extracted from the BraTS dataset which were
used for training the network. Details of our approach are given in the section below.

2.1 Dataset

This proposed method was trained and validated on BraTS 2018 training dataset and
validation dataset [1–3]. The training dataset included 210 High Grade Glioma
(HGG) cases and 75 cases with Low Grade Glioma (LGG) while validation set con-
sisted of 66 cases. For each case, there were four MRI sequences viz. the T1-weighted
(T1), T1 with gadolinium enhancing contrast (T1ce), T2-weighted (T2) and FLAIR.
All cases had been segmented manually, by four raters and marked annotations were
approved by experienced neuro-radiologists into intra-tumor parts like tumor core,
enhancing tumor and edema. The MRI data was collected from various institutions and
acquired with different protocols, magnetic field strengths and MRI scanners. Fur-
thermore, to pinpoint the clinical relevance of this segmentation task, BraTS 2018 also
focused on the prediction of patient overall survival via analysis of radiomic features.
For this purpose, the survival data (in days) of 163 cases was provided in training set
and 54 cases in validation set. Reference segmentation and OS for validation set was
hidden and evaluation was carried out via online evaluation portal.
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2.2 Pre-processing

The MRI data in BraTS challenge dataset was already pre-processed which included
skull stripping and the data was co-register and re-sampled to 1 mm � 1 mm � 1 mm
resolution. The dimensions of each volume were 240 � 240 � 155. The intensity in-
homogeneity was addressed with N4ITK tool [13]. All four MRI channel data was
normalized to zero mean and unit variance.

2.3 Patch Extraction and Training

The proposed model is modified version of 3D U-Net with 3 down-sampling and 3 up-
sampling branches with two back to back convolution layers with kernel size 3. 3D
voxels with size 64 � 64 � 64 were extracted randomly from the training data and
given as an input to the first layer of the model. Four patches extracted from FLAIR,
T1, T2, T1c were concatenated together to form 64 � 64 � 64 � 4 and fed for
training to the input layer along with corresponding Ground Truth. Patch extraction
was challenging because of the high class imbalance between tumor area and normal
brain tissues. During patch extraction, care was taken to include significant tumor area
to avoid bias to background and non-tumor pixels. This was done for all the four
modalities and ground truth as well. Each layer was followed by ReLU activation and
Batch Normalization. No data augmentation was performed during the training of
model.

At output 4 probability maps were generated for Necrosis, Edema, Enhancing
Tumor and Background (including non-tumor brain pixels). The label was assigned to
the map with highest probability amongst all. It was observed that there were some
False Positives present in the segmentation output.

3D Connected Component Analysis was done to identify all the segmented com-
ponents pre-sent in the segmented volume. Threshold value in terms of number of
pixels was identified and insignificant small components which false positives were
assigned to background label. This reduced false positives significantly. Similarly, to
reduce over-segmentation in certain cases a binary brain mask was generated from
brain volume and logical AND operation was performed on segmentation output. This
improved the accuracy of the segmentation significantly.

2.4 Radiomic Feature Extraction and Training

After segmentation of intra-tumor parts, the next task in BraTS 2018 was to predict the
over-all survival of the patients in number of days. For this task, organizers had
provided only age details and OS in days which made the task challenging. From the
last few years, researchers are working actively on Radiomic Feature extraction for
tumor analysis and survival prediction task [4]. In our approach, we computed
Radiomic features on FLAIR and T1c volume with different combination of intra-
tumor parts as (Figs. 1 and 2):

• Edema, Enhancing tumor and tumor core i.e. Whole tumor (WT)
• Tumor Core and Enhancing tumor (TC+ET)
• Enhancing tumor (ET)
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We computed first order statistics, shape features, Gray Level Co-occurrence
Matrix and Gray Level Run Length Matrix features. We computed 468 features for
edema, tumor core and enhancing tumor. These features were used to train the
regression model for survival prediction task. We started with 679 variables [678
radiomic variables (113 from each of the different tumor parts for both FLAIR and T1c
images) and Age]. The radiomic variables with near perfect correlation (Spearman’s
correlation coefficient 0.95 or higher, p 0.05 or lower) with each other were excluded
with only one of the variables in each set being retained (N = 117). Age and all
radiomics variables with no significant autocorrelations (N = 117) were assessed for
relationship with survival.

Multi-Layer perceptron was used to train the neural network. Variables which had a
statistically significant correlation (N = 56, including age) with survival were included
for training the neural network. Results were replicated by setting a random seed. To
assess the efficacy of the neural network and to correct over training, if any, we divided
the BraTS 2018 training dataset (N = 163) into Training (51.5%), Validation (14.7%)
and Testing (33.7%) subsets, randomly using Bernoulli variates. The neural network
had two hidden layers with the number of units per layer set to auto, sigmoid activation
functions for both the hidden as well as output layers. The variables were re-scaled

Fig. 2. Sample segmentation results. Each row represents one case. Columns from left to right:
FLAIR, T1, T2, T1c, GT and Output. Segmentation labels: Yellow for edema, Blue for
enhancing tumor and Red for tumor core. (Color figure online)
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using adjusted normalization with a correction of 0.2. The neural network was designed
to predict survival in days as well as two broad categories viz. survival <300 days and
survival >=300 days. All statistical procedures for survival prediction were performed
using SPSS for Windows v24 on a standard computer running Windows 10.

3 Result and Discussion

The performance of the proposed method was evaluated on BraTS 2018 training data
with 285 cases and validated on 66 cases for segmentation. The validation leader-board
gave interesting information about the performance of the different teams’ algorithms.
Average performance of proposed method on training data and validation data is given
in Tables 1 and 2 respectively in terms of Dice Similarity Index and Sensitivity. The
model was trained for 50 epochs and needed 48 h for training on NVIDIA P100 GPU
with 128 GB system RAM. The framework was developed in Tensorflow [8].

Overall, our approach reached a superior result in the whole tumor segmentation
task with an average dice coefficient of 93% over training dataset and 87% over
validation dataset. Sample segmentation results for intra-tumor parts are given in Fig. 2
The performance of the proposed approach is given in Table 3 in terms of Dice
Coefficient and Hausdorff95 distance.

Table 1. Performance of proposed method on BraTS 2018 training dataset for segmentation.

Evaluation metrics Dice Sensitivity
ET WT TC ET WT TC

Mean 0.8002 0.9324 0.9197 0.8951 0.9508 0.9359
Std. Dev. 0.2746 0.1056 0.1327 0.1397 0.0859 0.1005
Median 0.9062 0.9613 0.9564 0.9313 0.9645 0.9529
25 quantile 0.8421 0.9405 0.9303 0.8901 0.9451 0.9328
75 quantile 0.9422 0.9728 0.9687 0.9622 0.9777 0.9697

Table 2. Performance of proposed method on BraTS 2018 validation dataset for segmentation.

Evaluation metrics Dice Sensitivity
ET WT TC ET WT TC

Mean 0.7480 0.8780 0.8266 0.8266 0.9058 0.8186
Std. Dev. 0.2659 0.1345 0.1828 0.2306 0.1413 0.2136
Median 0.8527 0.9179 0.8985 0.9035 0.9436 0.9167
25 quantile 0.7325 0.8665 0.7771 0.8238 0.8953 0.7637
75 quantile 0.8853 0.9419 0.9444 0.9514 0.9720 0.9571
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For the prediction of survival categories, the neural network demonstrated an
accuracy of 70.2% in the training subset and 62.5% and 63.6% in the validation and
testing subsets, respectively. The accuracy was 69.5% for the entire training dataset.
The Area Under Curve (AUC) was 0.799 (Figs. 3 and 4). For prediction of survival in
days, the proposed model performed better for values in the middle, with lower per-
formance for the values at both extremes. The relative error was 0.842 for the training
subset, 0.774 for the validation subset and 0.910 for the testing dataset.

The performance of proposed OS prediction approach is given in Table 5 for 77
cases. The proposed approach stood third for overall Survival Prediction Task in BraTS
2018 Challenge (Table 4).

Table 3. Performance of proposed method on BraTS 2018 test dataset for segmentation.

Evaluation metrics Dice Hausdorff95
ET WT TC ET WT TC

Mean 0.6677 0.8474 0.7687 9.0554 17.2184 14.5728
Std. Dev. 0.3120 0.1699 0.2786 19.8975 28.9190 26.1504
Median 0.8013 0.9049 0.8946 2.2360 3.4641 3.3166
25 quantile 0.6556 0.8336 0.7519 1.4142 2.2360 2.0000
75 quantile 0.8656 0.9404 0.9328 3.6055 9.4604 8.4844

Fig. 3. ROC curve depicting the accuracy of the model for categorizing into <300 and >=300
days survival.
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Individual variable importance analysis revealed that the Age is one of the most
significant variables in this neural network. The other variables are shown in Table 6.

Fig. 4. Residual to predicted scatter plot showing the good fit of the model for survival values in
the middle between 200–350 days.

Table 5. Performance for OS prediction on test dataset.

Cases Accuracy MSE Median SE Std. Deviation Spearman R

77 0.558 338219.366 38408.16 939986.796 0.222

Table 4. Performance of Multi-layer perceptron for OS prediction on validation dataset.

Method Accuracy MSE Median SE Std. Deviation Spearman R

MLP 0.571 59550213.1 113611.616 128250465.8 0.427

Table 6. Importance of the independent variable in descending order (F = FLAIR)

Variable name Channel Region Importance Normalized importance (%)

Age – – 0.07 100.0
Entropy F TC+ET 0.049 70.3
Variance F TC+ET 0.04 57.4
Enhance count F TC+ET 0.038 54.4
Core count T1ce WT 0.034 49.10
Cluster shade T1ce TC+ET 0.031 44.7
Edema count F TC+ET 0.03 42.8

(continued)
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Table 6. (continued)

Variable name Channel Region Importance Normalized importance (%)

Dissimilarity T1ce TC+ET 0.029 42.3
Difference in entropy F ET 0.029 41.2
Variance T1ce TC+ET 0.027 39.0
Maximum probability T1ce ET 0.026 36.9
Sum of variance T1ce ET 0.025 36.3
Homogeneity T1ce TC+ET 0.024 34.7
Minimum T1ce WT 0.023 32.4
Correlation T1ce TC+ET 0.022 31.0
Inverse difference T1ce TC+ET 0.021 30.0
Contrast F TC+ET 0.021 29.9
Cluster shade T1ce ET 0.019 26.7
Correlation T1ce TC+ET 0.016 23.0
Variance T1ce ET 0.015 21.5
Maximum probability F ET 0.013 19.0
Cluster prominence T1ce ET 0.013 18.5
Dissimilarity F ET 0.013 18.5
Auto-correlation T1ce TC+ET 0.013 18.4
Inverse difference T1ce ET 0.013 18.4
Sum of squares variance T1ce ET 0.012 17.3
Difference in entropy F TC+ET 0.012 17.0
Average F TC+ET 0.012 16.6
Maximum probability T1ce TC+ET 0.011 15.4
Homogeneity F TC+ET 0.01 14.7
Difference in entropy T1ce TC+ET 0.009 13.1
Mean F TC+ET 0.009 12.4
Cluster prominence T1ce TC+ET 0.007 10.3
Sum average T1ce TC+ET 0.007 10.0
Inverse difference F TC+ET 0.006 9.2
Minimum F WT 0.005 7.8
Contrast T1ce TC+ET 0.005 6.7
Sum of intensities F ET 0.004 6.3
Contrast F ET 0.003 4.4
Homogeneity F ET 0.002 2.4
Contrast T1ce ET 0.001 1.9
Dissimilarity T1ce ET 0.001 1.7
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4 Conclusion

In this study, we proposed a Deep Learning Radiomics Algorithm for Gliomas
(DRAG) Model based on 3D U-Net network for brain tumor segmentation. 3D patches
were extracted from multi-channel MRI data to train the proposed model. Radiomic
features were extracted from FLAIR and T1ce channels for OS prediction task. MLP is
trained with these radiomic features to predict the OS in days. The proposed approach
achieved third place for OS prediction task in BraTS 2018 challenge [15].

The difference between mean and median in Table 2 indicates that for some cases,
our pro-posed approach achieved poor accuracy, which is very close to zero and more
analysis is required on this. Prediction of survival without more clinical data and
treatment information is challenging and the same is reflected through accuracy of the
participants in the leader-board. As the number of cases for OS prediction are less there
is a need to develop an efficient feature selection algorithm which will select potential
features for accurate OS prediction. Our future goal is to design radiomic features
extraction pipeline with deep neural networks.
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