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Abstract. Brain tumor is one of the leading causes of cancer death. Accurate
segmentation and quantitative analysis of brain tumor are critical for diagnosis
and treatment planning. Since manual segmentation is time-consuming, tedious
and error-prone, a fully automatic method for brain tumor segmentation is
needed. Recently, state-of-the-art approaches for brain tumor segmentation are
built on fully convolutional neural networks (FCNs) using either 2D or 3D
convolutions. However, 2D convolutions cannot make full use of the spatial
information of volumetric medical image data, while 3D convolutions suffer
from high expensive computational cost and memory demand. To address these
problems, we propose a novel Separable 3D U-Net architecture using separable
3D convolutions. Preliminary results on BraTS 2018 validation set show that
our proposed method achieved a mean enhancing tumor, whole tumor, and
tumor core Dice scores of 0.74932, 0.89353 and 0.83093 respectively. Finally,
during the testing stage we achieved competitive results with Dice scores of
0.68946, 0.83893, and 0.78347 for enhancing tumor, whole tumor, and tumor
core, respectively.
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1 Introduction

Image segmentation, especially semantic segmentation, is a fundamental and classic
problem in computer vision. It refers to partitioning an image into several disjoint
semantically meaningful parts and classifying each part into a pre-determined class. In
the application of brain tumor segmentation, the task includes the division of several
sub-regions, such as GD-enhancing tumor, peritumoral edema, and the necrotic and
non-enhancing tumor core [1]. Accurate segmentation and quantitative analysis of
brain tumor are critical for diagnosis and treatment planning. Generally, manual seg-
mentation of brain tumor is known to be time-consuming, tedious and error-prone.
Therefore, there is a strong need for a fully automatic method for brain tumor seg-
mentation. However, brain tumor segmentation is a challenging task because MR
images are typically acquired using various protocols and magnet strengths, which
results in the non-standard range of MR images. In addition, brain tumors can appear
anywhere in the brain, and their shape and size vary greatly. Furthermore, the intensity
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profiles of tumor regions are largely overlapped with healthy parts. Due to the chal-
lenge of brain tumor segmentation and the broad medical prospect, many researchers
have proposed various methods to solve the problem of brain tumor segmentation.

Brain tumor segmentation methods can be divided into different categories
according to different principles [2]. Broadly, these methods can be divided into two
major categories: generative methods and discriminative methods. Generative methods
typically rely on the prior information about the appearance of both healthy tissues and
tumors. The proposed models often regard the task of segmentation as a problem of a
posteriori distribution estimation. On the contrary, discriminative methods use very
little prior information and typically rely on a large number of low-level image features
to learn the distribution from the annotated training images.

More recently, due to the success of convolutional neural networks (CNNs), great
progress has been made in the field of computer vision. At the same time, many deep
learning based brain tumor segmentation methods have been proposed and achieved
great success. Havaei et al. [3] proposed a two-pathway architecture with a local
pathway and a global pathway, which can simultaneously exploit both local features
and more global contextual features. Kamnitsas et al. [4] proposed an efficient fully
connected multi-scale CNN architecture named deepmedic that uses 3D convolution
kernels and reassembles a high resolution and a low resolution pathway to obtain the
segmentation results. Furthermore, they used a 3D fully connected conditional random
field to effectively remove false positives. Isensee et al. [5] proposed 3D U-Net, which
carefully modified the popular U-Net architecture and used a dice loss function to cope
with class imbalance. They achieved competitive results on the BraTS 2017 testing
data. Kamnitsas et al. [6] introduced EMMA, an ensemble of multiple models and
architectures including deepmedic, FCNs and U-Net. Due to the heterogeneous col-
lection of networks, the model is insensitive to independent failures of each component
and has good generalization performance. They won first place in the final testing stage
of the BraTS 2017 challenge among more than 50 teams.

Although so many achievements have been made, the progress of medical image
analysis is slower than that of static images, and a key reason is the 3D properties of
medical images. This problem also occurs in the tasks of video understanding. To solve
this problem, Xie et al. [7] proposed S3D model by replacing 3D convolutions with
spatiotemporal-separable 3D convolutions. This model significantly improved on the
previous state-of-the-art 3D CNN model in terms of efficiency.

Inspired by S3D architecture for video classification and the state-of-the-art U-Net
architecture for medical image segmentation, we propose a novel framework named
S3D-UNet for brain tumor segmentation. To make full use of 3D volumes, we design a
new separable 3D convolution by dividing each 3D convolution into three branches in
a parallel fashion, each with a different orthogonal view, namely axial, sagittal and
coronal. We also propose a separable 3D block that takes advantage of the state-of-the-
art residual inception architecture. During the testing stage we achieved competitive
results with Dice scores of 0.68946, 0.83893, and 0.78347 for enhancing tumor, whole
tumor, and tumor core, respectively [8].
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2 Methods

2.1 Dataset

The brain tumor MRI dataset used in this study are provided by BraTS’2018 Challenge
[1, 9–11]. The training dataset includes multimodal brain MRI scans of 285 subjects, of
which 210 are GBM/HGG and 75 are LGG. Each subject contains four scans: native
T1-weighted (T1), post-contrast T1-weighted (T1c), T2-weighted (T2), and T2 Fluid
Attenuated Inversion Recovery (FLAIR). All the subjects in the training dataset are
provided with ground truth labels, which are segmented manually by one to four raters.
Annotations consist of the GD-enhancing tumor (ET - label 4), the peritumoral edema
(ED - label 2), and the necrotic and non-enhancing tumor core (NCR/NET - label 1).
The validation and testing datasets include multimodal brain MRI scans of 66 subjects
and 191 subjects which are similar to the training dataset but have no expert seg-
mentation annotations and the grading information.

2.2 Data Pre-processing

To remove the bias field caused by the inhomogeneity of the magnetic field and the
small motions during scanning, the N4ITK bias correction algorithm [12] is first
applied to the T1, T1c and T2 scans. The multimodal scans in BraTS 2018 were
acquired with different clinical protocols and various scanners from multiple institu-
tions [1], resulting in non-standardized intensity distribution. Therefore, normalization
is a necessary stage of processing multi-mode scanning by a single algorithm. We use
the histogram matching algorithm [13] to transform each scan to a specified histogram
to ensure that all the scans have a similar intensity distribution. We also resize the
original image of 240� 240� 155 voxels to 128� 128� 128 voxels by removing as
many zero background as possible. This processing not only can effectively improve
the calculation efficiency, but also retain the original image information as much as
possible. In the end, we normalize the data to have a zero mean and unit variance.

2.3 Network Architecture

S-3D Convolution Block. Traditional 2D CNNs for computer vision mainly involve
spatial convolutions. However, for video applications such as human action, both
spatial and temporal information need to be modeled jointly. By using 3D convolution
in the convolutional layers of CNNs, discriminative features along both the spatial and
the temporal dimensions can be captured. 3D CNNs have been widely used for human
action recognition in videos. However, the training of 3D CNN requires expensive
computational cost and memory demand, which hinders the construction of a very deep
3D CNN. To mitigate this problem, Xie et al. [7] proposed S3D model by replacing 3D
convolutions with spatiotemporal-separable 3D convolutions. Each 3D convolution can
be replaced by two consecutive convolutional layers: one 2D convolution to learn
spatial features and one 1D convolution to learn temporal features, as shown in Fig. 1
(a). By using separable temporal convolution, they build a new block using inception
architecture called “temporal inception block”, as shown in Fig. 1(b).
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Unlike video data, volumetric medical data have three orthogonal views, namely
axial, sagittal and coronal, and each view has important anatomical features. To
implement the separable 3D convolution directly, we need to specify which view as the
temporal direction. Wang et al. [14] propose a cascaded anisotropic convolutional
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Fig. 1. (a) An illustration of separable 3D convolution. A 3D convolution can be replaced by
two consecutive convolutional layers. (b) Temporal separable inception block.
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Fig. 2. (a) We divide a 3D convolution into three branches in a parallel fashion. (b) Our
proposed S3D block, which takes advantage of the residual inception architecture.

S3D-UNet: Separable 3D U-Net for Brain Tumor Segmentation 361



neural network consisting of multiple layers of anisotropic convolution filters, which
are then combined with multi-view fusion to reduce false positives. Each view of this
architecture is similar to a separable 3D convolution, and the multi-view fusion can be
view as an ensemble of networks in three orthogonal views that utilize 3D contextual
information for higher accuracy. They train a neural network for each view, it is not
end-to-end and requires longer time for training and testing. To fully utilize 3D con-
textual information and reduce computational complexity, we divide a 3D convolution
into three branches in a parallel fashion, each with a different orthogonal view, as
shown in Fig. 2(a). Furthermore, we propose a separable 3D block that takes advantage
of the residual inception architecture, as shown in Fig. 2(b).

S3D U-Net Architecture. Our framework is based on the U-Net structure proposed by
Ronneberger et al. [15] which consists of a contracting path to analyze the whole image
and a symmetric expanding path to recovery the original resolution, as shown in Fig. 3.
The U-Net structure has been widely used in the field of medical image segmentation
and has achieved competitive performance. Several studies [5, 16] have demonstrated
that a 3D version of U-Net using 3D volumes as input can produce better results than
an entirely 2D architecture.

Just like the U-Net and its extensions, our network has an autoencoder-like
architecture with a contracting path and an expanding path, as shown in Fig. 3. The
contracting path encodes the increasingly abstract representation of the input, and the
expanding path restores the original resolution. Similar to [5], we refer to the depth of
the network as level. Higher levels have lower spatial resolution but higher dimensional
feature representations and vice versa.
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Fig. 3. Schematic representation of our proposed network.

362 W. Chen et al.



The input to the contracting path is a 128� 128� 128 voxel block with 4 chan-
nels. The contracting path has 5 levels. Except for the first level, each level consists of
two S3D blocks. It is worth noting that each convolution in S3D block is followed by
instance normalization [17] and LeakyReLU. Different levels are connected by tran-
sition down block to reduce the resolution of the feature maps and double the number
of feature channels. Transition down module consists of a 3� 3� 3 convolution with
stride 2 followed by instance normalization and LeakyReLU. After the contracting
path, the size of the feature maps is decreased to 8� 8� 8.

In order to recover the input resolution at expanding path, we first adopt a transition
up module to upsample the previous feature maps and halve the number of feature
channels. Transition up module consists of a transposed 3� 3� 3 convolution with
stride 2 followed by instance normalization and LeakyReLU. Then the feature maps
from contracting path are concatenated with feature maps from expanding path via long
skip connections. At each level of expanding path, we use a 1� 1� 1 convolution
with stride 1 to halve the number of feature channels, followed by two S3D blocks that
are the same as in the contracting path. The final segmentation is done by a 1� 1� 1
convolutional layer followed by a softmax operation among the objective classes.

2.4 Loss Function

The performance of neural network depends not only on the choice of network
structure but also on the choice of the loss function [18]. Especially for severe class
imbalance, the choice of loss functions becomes more important. Due to the physio-
logical characteristics of brain tumors, the segmentation task has an inherent class
imbalance problem. Table 1 illustrates the distribution of the classes in the training data
of BraTS 2018. Background (label 0) is overwhelmingly dominant. According to [5],
we apply a multiclass Dice loss function to approach this issue. Let R be the one hot
coding ground truth segmentation with voxel values rkn, where k 2 K being the class at
voxel n 2 N. Let P be the output the network with voxel values pkn, where k 2 K being
the class at voxel n 2 N. The multiclass Dice loss function can be expressed as

DL ¼ 1� 2
K

X

k2K

P
n p

k
nr

k
nP

n p
k
n þ

P
n r

k
n

ð1Þ

2.5 Evaluation Metrics

Multiple criteria are computed as performance metrics to quantify the segmentation
result. Dice coefficient (Eq. 2) is the most frequently used metric for evaluating medical
image segmentation. P1 is the area that is predicted to be tumor and T1 is true tumor

Table 1. The distribution of the classes in the training data of BraTS 2018.

Background NCR/NET ED ET

Percentage 98.88 0.28 0.64 0.20
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area. It measures the overlap between the segmentations and ground truth with a value
between 0 and 1. The higher the Dice score, the better the segmentation performance.

DiceðP; TÞ ¼ P1 ^ T1j j
P1j j þ T1j jð Þ=2 ð2Þ

Sensitivity and specificity are also commonly used statistical measures. The sen-
sitivity (Eq. 3), also called true positive rate, defined as the proportion of positives that
are correctly predicted. It measures the portion of tumor regions in the ground truth that
are also predicted as tumor regions by the segmentation method. The specificity
(Eq. 4), also called true negative rate, defined as the proportion of negatives that are
correctly predicted. It measures the portion of normal tissue regions T0ð Þ in the ground
truth that are also predicted as normal tissue regions P0ð Þ by the segmentation method.

Sens(P; TÞ¼ P1 ^ T1j j
T1j j ð3Þ

Spec(P; TÞ¼ P0 ^ T0j j
T0j j ð4Þ

The Hausdorff Distance (Eq. 5) is used to evaluates the distance between the
segmentation boundary and the ground truth boundary. Mathematically, it is defined as
the maximum distance of all points p on the surface @P1 of a given volume P1 to the
nearest points t on the surface @T1 of the other given volume T1.

HausðP; TÞ ¼ maxf sup
p2@P1

inf
t2@T1

dðp; tÞ; sup
t2@T1

inf
p2@P1

dðt; pÞg ð5Þ

3 Experiments and Results

The network is trained on a GeForce GTX 1080Ti GPU with a batch size of 1 using
PyTorch toolbox. Adam [19] is used as the optimizer with an initial learning rate 0.001
and a l2 weight decay of 1e−8. We evaluate all the cases for training data and vali-
dation data using online CBICA portal for BraTS 2018 challenge. The sub-regions
considered for evaluation are “enhancing tumor” (ET), “tumor core” (TC), and “whole
tumor” (WT).

Table 2 presents the quantitative evaluations with the BraTS 2018 training set via
five cross-validation. It shows that the proposed method achieves average Dice scores
of 0.73953, 0.88809 and 0.84419 for enhancing tumor, whole tumor and tumor core,
respectively. A 3D U-Net without the proposed S3D block is also trained, and the
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quantitative evaluations with the BraTS 2018 training set are shown in Table 3. It can
be seen that the Dice score of enhancing tumor has been significantly improved using
S3D block. The corresponding values for BraTS 2018 validation set are 0.74932,
0.89353 and 0.83093, respectively, as shown in Table 4. Examples of the segmenta-
tions obtained from the training set using our method are shown in Fig. 4.

Table 5 shows the challenge testing set results. Our proposed method achieves
average Dice scores of 0.68946, 0.83893 and 0.78347 for enhancing tumor, whole
tumor and tumor core, respectively. Compared with the performance of the training and

Fig. 4. Examples of segmentation from the of BraTS 2018 training data. red: NCR/NET, green:
ED, blue: ET. (the first two rows) Satisfying segmentation. (the last two rows) Unsatisfactory
segmentation. In the future, we will adopt some post-processing methods to improve the
segmentation performance. (Color figure online)
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validation sets, the scores are significantly reduced. However, the high median values
show that the testing set may contains some difficult cases, resulting in the lower
average scores.

Table 5. Dice and Hausdorff95 for BRATS 2018 testing set. ET: enhancing tumor, WT: whole
tumor, TC: tumor core.

Dice Hausdorff95
ET WT TC ET WT TC

Mean 0.68946 0.83893 0.78347 4.51842 9.20202 7.71181
StdDev 0.27809 0.17584 0.2549 8.04775 16.55337 15.64779
Median 0.78848 0.89967 0.89183 2.23607 3.60555 3
25quantile 0.68368 0.83469 0.75508 1.41421 2.23607 2
75quantile 0.84938 0.93011 0.92732 3.31662 6.89116 6.7082

Table 2. The evaluation scores for BraTS 2018 training set. ET: enhancing tumor, WT: whole
tumor, TC: tumor core.

ET WT TC

Dice 0.73953 0.88809 0.84419
Hausdorff95 4.63102 5.88769 5.66071
Sensitivity 0.78628 0.88069 0.83281
Specificity 0.99791 0.99481 0.9972

Table 3. The evaluation scores for BraTS 2018 training set using a 3D U-Net without the
proposed S3D block. ET: enhancing tumor, WT: whole tumor, TC: tumor core.

ET WT TC

Dice 0.68428 0.89912 0.86772
Hausdorff95 5.32635 5.55958 5.10478
Sensitivity 0.81677 0.88683 0.85932
Specificity 0.99692 0.99528 0.99744

Table 4. The evaluation scores for BraTS 2018 validation set. ET: enhancing tumor, WT: whole
tumor, TC: tumor core.

ET WT TC

Dice 0.74932 0.89353 0.83093
Hausdorff95 4.43214 4.71646 7.74775
Sensitivity 0.78492 0.92903 0.81606
Specificity 0.99761 0.99274 0.99814
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4 Discussion and Conclusion

We propose a S3D-UNet architecture for automatic brain tumor segmentation. In order
to make full use of 3D volume information while reducing the amount of calculation,
we adopt separable 3D convolutions. For the characteristics of the isotropic resolution
of brain tumor MR images, we design a new separable 3D convolution architecture by
dividing each 3D convolution into three branches in a parallel fashion, each with a
different orthogonal view, namely axial, sagittal and coronal. We also propose a sep-
arable 3D block that takes advantage of the state-of-the-art residual inception archi-
tecture. Finally, based on separable 3D convolutions, we propose the S3D-UNet
architecture using the prevalent U-Net structure.

This network has been evaluated on the BraTS 2018 Challenge testing dataset and
achieved an average Dice scores of 0. 68946, 0. 83893 and 0. 78347 for the seg-
mentation of enhancing tumor, whole tumor and tumor core, respectively. Compared
with the performance of the training and validation sets, the scores of testing set are
lower. This may be due to the difficult cases in testing set because the median values
are high. In the future, we will work to enhance the robustness of the network.

For volumetric medical image segmentation, 3D contextual information is an
important factor to obtain high-performance results. The straightforward way to capture
such 3D context is to use 3D convolutions. However, the use of a large number of 3D
convolutions will significantly increase the number of parameters, thus complicating
the training process. In the video understanding tasks, the separable 3D convolutions
with higher computational efficiency have been adopted. In this paper, we demonstrate
that the U-Net with separable 3D convolutions can achieve promising results in the
field of medical image segmentation.

In the future work, we will continue to improve the structure of the network and use
some post-processing methods such as fully connected conditional random field to
further improve the segmentation performance.
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